Dictionary Structure and Probability Measures

DAVID SANKOFF

Centre de recherches mathématiques, Université de Montréal, Montréal, Canada

Dictionary definitions are logical combinations of basic markers. Definitions can be reduced to disjunctions of meanings, which are conjunctions of markers. The set of words which can take on a meaning is its lexical representation set, and under natural conditions such sets are partially ordered by inclusion in the same way as the meanings are ordered by implication. To each set of lexical representation sets, however, there may exist several, nontrivially different, minimal dictionaries. When a probability measure is imposed on a dictionary, certain conditional probabilities can be extended to measures on algebras generated by lexical representation sets but not those generated by corresponding sets of markers.

1. INTRODUCTION

The notion of a dictionary, or inventory of the relationships between words and meanings in a language, is important to most linguistic theories. This paper compares two empirically-motivated approaches to the formalization of this notion. The first assumes the existence of a set of primitive entities called markers such that every meaning can be represented by some Boolean combination of markers. See, for example, Chomsky (1965, Chap. 2, Section 3; Chap. 4, Section 2), Katz (1966), Lehrer (1970). The second is based on the hierarchical arrangement of generic and specific terms in taxonomies (e.g., Kay 1969).

To compare these approaches, they must be formalized so that they deal with the same types of data. This will require a mathematical simplification and idealization of theories of dictionaries based on markers on the one hand, and a generalization from taxonomies to a wider class of partial orders on the other. Then these two approaches lead to classes of dictionaries which are comparable in a natural way. After exploring this comparison with the help of the notion of economy of marking, we will be able to point out some previously unnoticed properties of the class of marker-based inventories which do not seem to be useful, or desirable, in the context of semantics.

In the final section of this paper, we use the algebraic structures of
dictionaries as the bases for probability measures. This suggests a foundation for a statistical theory of performance derived from competence models of dictionaries, and a link between the voluminous empirical results on the "surface" phenomena of word frequency, statistical stylistics, etc. (see Dolezal and Bailey 1969), and modern "structural" linguistics.

2. DEFINITIONS

In this section and the next we apply the terminology and format of Boolean function theory as developed by Quine (and summarized by Birkhoff and Bartee, 1970) to dictionary structure.

Let \(W \) and \(M \) be finite sets. A dictionary \(D \) consists of

(i) for each \(w \in W \), a single implication \(w \Rightarrow d \), where \(d \) is a logical formula involving elements \(m \in M \), using only \(\land \) (conjunction) and \(\lor \) (disjunction); and

(ii) a subset \(S_0 \) of the fundamental formulae (elements of \(M \) and conjunctions of them), which excludes formulae representing semantic self-contradiction, but includes all prime implicants of \(d \) in (i). \(p \) is a prime implicant of \(d \) if \(p \Rightarrow d \) but no \(q \Rightarrow d \), where \(q \) is \(p \) minus any of its markers (Quine, 1959; Birkhoff and Bartee, 1970, p. 180).

\(W \) is the set of words, \(M \) the set of markers, and the implications \(w \Rightarrow d \) are called dictionary entries, where \(d \) is the definition of \(w \). \(S_0 \) is the redundancy structure of the dictionary, and the elements of \(S_0 \) are meanings.

The uniqueness condition in (i) is not a restriction if it is assumed that the two entries \(w \Rightarrow d_1 \) and \(w \Rightarrow d_2 \) would together be equivalent to \(w \Rightarrow d_1 \lor d_2 \).

The exclusion of \(\neg \) (negation) from definitions is made so as to avoid assuming that every marker has a negative, or that semantic features must be binary rather than multivalued. In our formulation, two (unary) markers may act as negations of each other, i.e., they may be labelled \(m^+ \) and \(m^- \), and all meanings containing \(m^+ \land m^- \) excluded from \(S_0 \). In the same way, \(m_1, m_2, \ldots, m_k \) may be considered mutually exclusive values of a multivalued semantic feature, and meanings containing \(m_i \land m_j \) will be excluded from \(S_0 \) for \(i \neq j \).

A natural restriction on \(D \), complementary to the exclusion of self-contradictions from \(S_0 \), is the assumption that no definition \(d \) is tautologous. For example, if every meaning in \(S_0 \) contains at least one of \(m_1, m_2, \ldots, m_k \), then for no definition \(d \) is

\[d \Leftrightarrow m_1 \lor m_2 \lor \cdots \lor m_k. \]
It may be remarked about these restrictions and conventions that in order to concentrate on the mathematical properties of dictionaries with markers, we have in effect relegated questions which are linguistically problematic or controversial to being questions about the structure of \(S_0 \) only.

3. Canonical Form for Dictionaries

Since no negations are present in a dictionary definition, it may be reduced to a unique simplest normal form. This result, due to Quine (1952, p. 531), may be rephrased as:

Theorem 1. If no reference may be made to \(S_0 \), then each dictionary may be reduced to (is logically equivalent to) a unique dictionary in canonical form, i.e., where the entries are in simplest normal form

\[
\varphi \Rightarrow p_1 \lor p_2 \lor \cdots \lor p_j,
\]

such that each clause \(p_i \) is a meaning (conjunction of markers):

\[
p_i = m_1^i \land m_2^i \land \cdots \land m_k^i.
\]

Moreover, the new canonical dictionary has the same redundancy structure \(S_0 \) as the original dictionary.

Proof. Let \(m_1, m_2, \ldots, m_r \) be the markers appearing in the formula \(d \). From all the possible fundamental formulae involving only these markers, let \(q_1, q_2, \ldots, q_h \) be those which imply \(d \), and relabel as \(p_1, p_2, \ldots, p_j \) just those \(q \) which do not imply any other \(q \). Then

\[
d \Leftrightarrow p_1 \lor p_2 \lor \cdots \lor p_j
\]

and the equivalence breaks down if any of the \(p \)'s are missing from the right side or if there are any other clauses present which do not contain a \(p \). Hence this is the simplest normal form equivalent to \(d \).

Since the prime implicants of a definition must be contained in \(S_0 \), and since these are also the prime implicants of the normal form (in fact, the \(p \)), the last statement in the theorem follows.

The redundancy structure of a dictionary may be used to further simplify definitions in certain cases, but there are then competing criteria of simplicity—fewest clauses versus fewest markers or fewest total number of symbols (Birkhoff and Bartee, 1970, p. 179). Even in the case where every
marker has a negative and \(S_0 \) contains all fundamental formulae except self-contradictions, uniqueness of the simplest normal form does not necessarily hold—see, for example, Quine (1955, p. 630).

4. **Semantic Field and Lexical Representation Sets**

The prime implicants of the definition of a word are only the most general meanings that word can take on. In fact, a word may be used, without logical inconsistency, for any meaning in \(S_0 \) which implies at least one of its prime implicants. This motivates the definition of the *semantic field* of a word; if \(w = p_1 \lor p_2 \lor \cdots \lor p_j \),

\[
S(w) = \{ q \mid q \in S_0 \text{ and } q \Rightarrow p_i \text{ for some } i \leq j \}. \tag{2}
\]

The semantic field of a word includes each clause of the canonical dictionary definition plus all more specific (with additional markers) meanings. The *lexical representation set* of a meaning \(p \) includes all words which include that meaning in their semantic fields. Then we define, for \(p \in S_0 \),

\[
L(p) = \{ w \in W \mid p \in S(w) \}.
\]

As is usual in formal semantic theories, the concepts of semantic field and lexical representation set have utility only in contexts where the coining of metaphors and other unusual usages of lexical items are restricted, or where threshold conditions are used in a probabilistic theory of semantics—see Sechser (1967).

5. **Economy of Marking**

If there are very many words in a dictionary and few markers, the semantic fields of different words may coincide. This phenomenon, *synonymy*, is acceptable in a concise but complete dictionary or in the preliminary version of a dictionary. On the other hand, if there are too many markers in a dictionary, either (a) the set \(W \) does not contain enough words to distinguish between meanings, or else (b) there is an excessive, or inefficient, assignment of markers. Our notation will be in terms of (b). In particular, if for some \(m \in M, n \in M \)

\[
\phi \neq L(m) = L(n),
\]
the dictionary is strongly redundant. Weakening this somewhat, if for some $m \in M$, and some meaning p,

$$\sim(p \Rightarrow m) \quad \text{but} \quad \phi \neq L(m) \subseteq L(p),$$

then the dictionary is weakly redundant. A still subtler type of "pathology" occurs when, for some meanings p and q,

$$\sim(p \Rightarrow q) \quad \text{but} \quad \phi \neq L(q) \subseteq L(p).$$

When this does not occur, we say the dictionary is partially ordered. In what follows, we study the class of partially ordered dictionaries.

Theorem 2. Each partially ordered dictionary defines a one-to-one map between the lexically represented meanings in S_0 and $A = \{L(p)\}_{p \in S_0} - \phi$.

Proof. It need only be proved that the map $p \mapsto L(p)$ is invertible. That is, if $p \neq q$ and $L(p) \neq \phi$, then $L(p) \neq L(q)$. But $p \neq q \Rightarrow \sim(p \Rightarrow q) \lor \sim(q \Rightarrow p)$

$$\Rightarrow [L(q) \nsubseteq L(p)] \lor [L(p) \nsubseteq L(q)],$$

by the partial order property. Then

$$L(p) \neq L(q).$$

Theorem 3. Each set A, whose elements are nonvoid subsets of W, defines at least one minimal partially ordered dictionary such that

$$A = \{L(p)\}_{p \in S_0}.$$

Proof. Consider the partial order of A by inclusion, (A, \subseteq). By Theorem 2, this must be isomorphic to the partial order by implication (S_0, \Rightarrow) of any dictionary, where $L(p) \in A$ is the lexical representation set of $p \in S_0$. It suffices to construct one such (S_0, \Rightarrow), for then there must exist a minimal such ordering, for any reasonable criterion of minimality, e.g., having the smallest marker set M.

To each smallest (i.e., extreme left) set $L_i \in A$, assign a marker m_i, and assign it as well to each set in A which includes (is on the right of) L_i. This produces a preliminary marking of all sets. If no two sets have the same marking, the assignment is finished. If some pair of sets L_i, L_j not related by the partial order, have the same marking, assign markers m_i and m_j, respectively, to them (and to sets on the right of them). Do this to the leftmost remaining pairs until there are none left. (If there is a triplet of sets identically
marked, assign three new markers, etc.) If a pair of sets $L_i \subset L_j$ have the same marking, it suffices to put a new marker on L_i and sets on its right.

The resulting marking is such that no two sets are marked the same and if p and q are the markings on sets L_p and L_q, $p = q$ if and only if L_p is to the right of L_q, i.e., if and only if $L_q \subset L_p$.

Now it is possible to assign dictionary definitions to $w \in \mathbb{W}$. Let $w \in L_p \in A$, such that p is the marking on L_p. Then the disjunction of all such p is the dictionary definition of w. (This must then be reduced to canonical form.) $S(w)$ will also consist of just these meanings. $L(p)$ consists of all w such that $p \in S(w)$ and hence $L(p) = L_p$ which completes the theorem.

There are other, somewhat easier, constructions of marking systems, such as the assignment to each set in A of all the words in that set. The construction in Theorem 3, however, is more interesting in that it often produces a minimal marking.

6. **Nonuniqueness of Marking Systems**

It is not true that the minimal marking in Theorem 3 is always unique. Figure 1 depicts cases where (A, C) is consistent with two minimal marking systems, where the difference is not merely a permutation of marker labels.

In an earlier study (Sankoff, 1969) it was suggested that for certain aspects of semantic structure it suffices to consider meanings in terms of their lexical representation sets. Furthermore, in the practical construction of dictionaries or parts of dictionaries, as in ethnosemantics (Tyler, 1969), it is frequently the case that the data consists of relationships of a taxonomic or set-theoretic nature; e.g., a set of words can all be considered synonyms in a certain context, some words can take on specific and generic meanings while others can take on only specific connotations, etc. Dictionaries with markers are often considered convenient and natural ways of summarizing taxonomic data. But as was pointed out by Burling (1969) and Hymes (1969), there is no unique way, in general, of constructing marker systems even in the case of tree-like taxonomies. What about the existence of marker systems which are most natural or economical in some sense? This has been doubted, on psycholinguistic grounds, by Macnamara (1971), and the counterexamples to uniqueness in Fig. 1 prove the following result.

Theorem 4. In general, taxonomic data (i.e., lexical representation sets for meanings) need not uniquely determine a minimal marking system for a partially ordered dictionary.
This theorem implies that in constructing dictionaries with markers on the basis of taxonomic data, one runs the risk of implicitly assuming certain details of semantic structure which have no counterpart in the data.

7. Probability and Dictionaries

The imposition of probabilities on sets of words and meanings has been studied by Sechser (1967), Sankoff (1969), and Lehrer (1970). In particular, Lehrer demonstrated the necessity of having probability weights on certain markers in definitions.

On type of event which should be measurable in any probability space associated with a dictionary, occurs when a word w takes on a meaning p in its semantic field as defined in (2). This must be the single most specific meaning w is construed as having in the particular context being considered.

Given a dictionary D, let 2^W and 2^{S_0} stand for the sets of all subsets of W and S_0, respectively. Without ambiguity, we will write $\{w\}$ as w.

Let $P(\cdot, \cdot)$ be a bivariate real function on $2^W \times 2^{S_0}$ with values in $[0, 1]$, satisfying

\[
P(w, p) > 0 \iff p \in S(w),
\]

\[
P(A, B) = \sum_{w \in A} \sum_{p \in B} P(w, p)
\]

\[
P(W, S_0) = 1.
\]
Then $P(\cdot, \cdot)$ is clearly a probability measure on the algebra of subsets of $W \times S_0$, where $P(w, p)$ may be interpreted as the probability of the event that w is used and takes on meaning p. Condition (3) ensures that the probability that a word takes on a meaning outside its semantic field is zero.

For $p \Rightarrow q \in S_0$, define $P_p(q)$ as the probability that if the meaning p is expressed, the word that expresses it is in $L(q)$. Then

$$P_p(q) = \frac{P(L(q), p)}{P(L(p), p)}.$$

$P_p(\cdot)$ can be considered as a set function defined either on certain subsets of the markers in p, or on elements of A_p, the set of lexical representation sets of meanings implied by p. In either case, can the domain of definition of $P_p(\cdot)$ be extended in a natural way to an algebra on which $P_p(\cdot)$ is a probability measure? The answer is provided by the following.

Theorem 5. Let Π_p be the set of subsets of markers corresponding to meanings implied by p. A_p is the set of lexical representation sets of the same meanings. Then $P_p(\cdot)$ has a natural extension to a probability measure on the algebra generated by A_p, but not, in general, to the algebra generated by Π_p.

Proof. Since $P_p(\cdot)$ takes on values in $[0, 1]$ and $P_p(p) = 1$, it remains only to prove, or give counterexamples to, the additivity property required of measures.

In the case of the algebra generated by A_p, this is a subalgebra of 2^W and hence of $2^W \times 2^{S_0}$ and $P_p(\cdot)$ is a conditional probability measure, given that the meaning p is used. Such measures, of course, are additive.

In the case of the algebra generated by Π_p, consider two meanings q_1 and q_2, both implied by p, but having no markers in common, and disjoint lexical representation sets. If the meaning $q_1 \land q_2$ is in S_0, its lexical representation set contains those of q_1 and q_2 but possibly other words as well, so that in such a case

$$P_p(q_1 \lor q_2) < P_p(q_1) + P_p(q_2).$$

The foregoing result indicates that sets of lexical representation sets are more natural bases for a probabilistic theory of semantics than dictionaries with markers. It is worth noting, however, that $P_p(\cdot)$ respects the partial order by implication of S_0.

Two types of marginal probabilities of $P(\cdot, \cdot)$ have special status in the literature. $P(\cdot, S_0)$ is the probability measure underlying word-frequency distributions (e.g., Juillard and Chang–Rodriguez, 1965, and $P(W, \cdot)$ is
at least conceptually related to the semantic frequency lists of Eaton (1940). The notion that a word takes on different meanings in its semantic field with fixed probabilities is the simplest theory which accounts for observable usage frequencies for different synonyms, generic versus specific terms, polysemous (multiple meanings) words versus unambiguous ones, etc. Insofar as this theory is reasonable, there must exist a (unique) probability measure $P(\cdot, \cdot)$ satisfying (3), (4), and (5) such that in long enough texts the frequencies of lexical-semantic phenomena should approximate the expected value predicted by $P(\cdot, \cdot)$.

Recently, there has been considerable progress in extending structural linguistic theory through the incorporation of probabilistic considerations. See, for example, Horning (1969) on grammatical inference, Labov (1969) on phonology and syntax, and Peizer and Olmsted (1969) on acquisition. The imposition of probability measures on dictionaries continues this development. For instance, it provides a possible basis for treating lexical choice as being governed by variable rules.

ACKNOWLEDGMENTS

I wish to thank Adrienne Lehrer and John Macnamara for their comments and for making available preprints of their respective papers, Paul Kay and W. H. Geoghegan for drawing my attention to Quine’s articles, and Donald Dawson for encouragement and valuable suggestions early in this work.

RECEIVED: February 13, 1970; REVISED: September 9, 1970

REFERENCES

