
D A V I D  S A N K O F F  

P A R T Y  S T R A T E G Y  A N D  T H E  R E L A T I O N S H I P  

B E T W E E N  V O T E S  A N D  S E A T S  

Game theoretical treatments of electoral campaigns have modeled either 
one of  two aspects of  the link between campaign strategy and voting be- 
haviour. The so-called spatial theory assumes (somewhat cynically) that 
candidates are free to move in an issue space in search of  an optimal posi- 
tion with respect to an electorate, The latter is represented by a probability 
distribution over this space and a voter occupying a given position is as- 
sumed to vote for the nearest candidate. A second approach (even more 
cynical) ignores issues entirely and assumes that in a given area, differential 
voter response to candidates is a function only of  differential expenditure 
of  resources, financial or otherwise, by the candidates, in that area. In the 
latter type of  analysis, the nature of the electoral law and representational 
system plays a central role. This paper summarizes and compares recent 
work on resource allocation games and develops the mathematical ap- 
paratus for  studying more realistic models than have been considered to 
date. A by-product of this approach is a new type of explanation for vote- 
seat relationships such as the cube law (Kendall and Stuart, 1950). 

I. G A M E S  W I T H  C O M P L E T E  S E C R E C Y  

A key component  of  real electoral strategyis secrecy about  resource alloca- 
tion. Money and effort spent in a given area will be more effective if the 
opponent  does not  find out about  it beforehand or soon enough after- 
ward to compensate. This aspect of  campaign strategy can be modeled by 
a type o f  game originally known as 'Blotto'.  

There are two opponents, I and II, with known resources R~ and Rat 
respectively. Each player i allocates (secretly) his resources among n con- 
tests, i.e. chooses a vector (r~ . . . . .  r~) such that rki>/0 and ~,~rk=R ~ . ~  I f  
r~>r~ T we say that [ wins contest k, and if  r~<r~ ~, we say II wins. Each 
player must find a (mixed) strategy which maximizes the minimum number 
of  contests (i.e. constituencies, districts, or  counties) he can expect to win 
over all possible strategies played by his opponent.  
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This game has a solution. One set of nearly optimal strategies can be 
visualized as follows. Suppose Rx > R~I. Then player I chooses an alloca- 
tion using the following procedure. He arranges the n contests in a random 
order and equally spaced along the unit interval so that Xk is the position 
of the kth contest.He constructs the linear function r ( x ) = 2 R I ( 1 - x ) / n  

and allocates r~=r(xk )  to the kth contest. Player II randomizes the con- 
tests as well, but assigns no resources to the kth contest if Xk > RII/Rx. On 
the interval (0, RII/R~) he allocates resources according to the function 
r (x)= 2R I (1 -xR1/Ru)/n. By ignoring some contests, the player with lesser 
resources is able to compete on an equal footing with the richer player in 
the rest. The value of the game, or the proportion of contests player I 
can expect to win, is 1 -  Rn/2RI .  Proofs can be found in Sankoff and 
Mellos (1972) and, using other types of optimal strategies, in a series of 
Rand corporation memoranda of 1950-51, by Gross and Wagner, and in 
a paper of Friedman (1958). 

In applying this model to the single representative, simple plurality 
electoral system, what does the game value tell us about the relationship 
between V~, the proportion of the total popular vote obtained by party I, 
and S~, the proportion of seats he expects to win? To answer this, we must 
specify the association between resources spent r~ and votes obtained v~ 
within an electoral district k. An easy, through somewhat unrealistic, 
way of doing this is through simple proportionality: V~k= cry. Then SI= 
= 1 - R I , / 2 R  I = 1 - ZVn,/2~VXk = 1 -- Vu/2  VI = (3 V, -- 1)/2 V I. The slope of S~ 
as a function of VI is 2 at the point (�89 �89 This slope, which we call the 
swing ratio, is halfway between the value for proportional representation 
on one hand, and the value for the cube law (i.e. 3) on the other. 

A more realistic association between resources and votes might be 
i +Cr~k,  where Co represents equal hard-core contributions to the /)k : C0 

support of both parties in each district. This is still overly simple but it is 
an improvement on the basic model and it requires the same game theory 
solution. I.e. once again SI= 1--Rn/2RI, but this now leads to a swing 
ratio of 2/(1-2nco). So if �89 of all voters are hard-core, we arrive at a 
swing ratio of 3, if �89 are hard-core, we get a swing ratio of 4, and so on. 

II. GAMES WITH PERFECT INFORMATION 

The model based on the complete secrecy assumption is obviously un- 
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realistic. At the other extreme, where both players know exactly what the 
other one is doing, this type of game has no solution, since there are no 
optimal pure strategies (unless RH is trivially small). Brams and Davis 
(1974) have introduced another type of game with perfect information, 
where voting within a district is still a function of  resources spent, but a 
function which incorporates a random component. This game has equi- 
librium strategies when RI = Rn, but little else is known about it. 

I I I .  C O M B I N I N G  B O U N D  A N D  F R E E  R E S O U R C E S  

Despite Watergate, games with perfect information are about as un- 
realistic as games with perfect secrecy. I would like to suggest an approach 
to controlling the balance between information and secrecy in allocation 
games. Let us return to our original game, but in addition to the freely 
allocatable resources RI and RH, we suppose that in each district k, the 
parties already have some bound (or fixed) resources, sayf~ andf~  I, re- 
spectively, and that the f~  are known to both parties. Party I wins if 

I I II II r~+fk>ri +fk and II wins if the inequality is reversed. If  the known, 
bound resources are large compared to the R~, then the game approaches 
perfect information. If  the bound resources are very small, on the other 
hand, then the game approaches perfect secrecy. Tiffs game may also be 
considered a further generalization of the secret game mentioned at the 
end of Section I above, where the parties had equal numbers of hard-core 
supporters in each district k. In the present game thef~  do not all have 
to be equal. 

Though it would be preferable to solve this game in full generality, the 
solutions presently available for certain special cases provide a great deal 
of insight into the types of optimal strategies which arise. 

IV.  A G A M E  W I T H  A F I X E D  A D V A N T A G E  I N  A L L  D I S T R I C T S  

For example, suppose fnk--fIk=f >O for all k. This might be a model for 
a situation where one party, perhaps the one presently in power, has a 
systematic advantage in all districts. 

To solve this game, we extend the basic principle that, on a set of the 
districts where both parties allocate free resources, an optimal strategy 
for the party with fewer total resources to spend in that set is to ignore 
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some districts so that it can compete on an equal footing in the others. 
This principle can be derived from the fact that the swing ratio is greater 
than one in the purely secret game. 

Choose resource units so that R~+RH+F=I, where F=nf .  Then if 
party I competes on a proportion D~ of the districts, and II on DH, 
the principle requires that Rn/DII=(RI-FDO/DI. Since the two parties 
allocate independently, the subsets of size D~ and D,~ will be chosen 
independently and I will win a proportion DI(1-D,)+�89 of the 
districts. Maximizing with respect to D~, we find that if F>R~-�88 
( I + - ~ / R H ) ,  then DI<I, and party I wins (R~/F)[I+(RII/F) 
( l - x / 1  +2F/Rn)]. Otherwise, Dt=  1 and the game becomes identical 
to our original game with resources R ~ - F  and RH, respectively, so that 
I wins 1 - R n / 2 ( R I - F ) .  

What does all this mean in terms of seats and votes? For comparison's 
sake, we will work in terms of the simple proportionality between re- 
sources and votes, though hard-core considerations are just as easy to 
incorporate as in the purely secret game. For small F, say F =  Rn/9, the 
seat vote curve is almost indistinguishable from that of the purely secret 
game. But as F becomes a greater proportion of II's resources, the curve 
changes in character. I's share of the seats increases more rapidly as Rl 
moves from zero upward, so that if F =  9RH, say, I can expect to win 50~o 
of the seats with only 42~ of the votes. With 50~o of the votes, he can 
expect 70~ of the seats. Thus we have found a framework for assessing 
the relative value of bound versus free resources. 

Another feature of these curves is that if we assess the swing ratio at 
Sl = 0.5 and not at Vt= 0.5, this ratio remains 2. (This has not been proved, 
only observed in a number of calculated curves.) 

V. A G A M E  W I T H  I N C U M B E N T  A D V A N T A G E  I N  A L L  D I S T R I C T S  

The final game to be discussed is a generalization of the previous one. 
II I Here fk --fk=f for a proportion M of the districts, and flk--f~=f for 

L =  1 - M  of them. This might be a model of the situation where, in a 
preceding election, party I won a proportion L of the seats and II won M, 
and where incumbency results in a fixed advantage in all districts. 

Of course, this game is much less tractable than the previous one. 
Nevertheless some interesting results are obtainable. 
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Let F = l f a s  before and RI+RI I+(M+L ) F=RI+RII+F= 1. Suppose 
party I assigns aRl to the set of seats where it has the advantage, and 
(1 - a )  RI to the others, while II assigns ( 1 -  b) RII and bRii, respectively. 
Is it possible that for some optimal strategies, a and b are fixed propor- 
tions ? A priori, we cannot assume they are, since an optimal mixed strate- 
gy for I, say, might very well require that a be picked according to some 
probability distribution. If a and b could be constants, however, it would 
facilitate the solution of the game, for then we could decompose the game 
into two games of the previous type, one where I has the advantage in all 
districts, and the other one where ff has the advantage. For a and b to be 
constant, it would be necessary for S~ to have a saddle point as a function 
of a and b. It is possible to show that the existence of a saddle point is 
equivalent to the existence of  appropriate solutions of certain equations. 
We can solve these equations numerically for given R~, Rn, M, L, and F, 
and hence show that a saddle point exists. Thus optimal values (con- 
stants) for a and b can be found, which considerably mitigates the diffi- 
culties inherent in this game. 

The relationship between resources and votes has not yet been incor- 
porated in this model, mainly because the seat-resource relationships are 
not available as formulae, but must be computed numerically. In the 
same way, however, numerical tabulation of seat-vote curves is feasible. 

In summary, I have sketched the extent of current knowledge about a 
class of resource allocation games, some of which are considerably more 
realistic than the original Blotto game. This research indicates that the 
departure from proportionality in simple plurality single representative 
systems can be explained in large part through the strategic problems par- 
ties encounter by virtue of the game-like character of this electoral system. 

Future work on these problems will aim at the solution of the game 
with arbitrary patterns of  bound and free resources. In addition, an at- 
tempt must be made to come to terms with the non-uniqueness of optimal 
strategies. One way to do this is, for given strategies, to compare the ex- 
pected distribution of v~/(v~ + v~ ~) across all districts k, with the distribu- 
tions observed in real electoral systems by Kendall and Smart (1950), 
March (1957-8), and Sankoff and Mellos (1973). 
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