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Given a tree each of whose terminal  vertices is associated with a given poin t  in a 
compact  metric space, the problem is to optimally associate a point  in this space to 
each nonterminal  vertex of the tree. The optimali ty criterion is the minimizat ion o f  the 
sum of the lengths, in the  metric space, over all edges of  the tree. This note shows how a 
dynamic  programming solution to this problem generalizes a number  of  previously 
published algori thms in diverse metr ic  spaces, each of which has  direct and significant 
applications to biological systematics or evolutionary theory.  

Given T a tree with vertex set V ( T ) =  { X  1 . . . . .  Xm,  Y1 . . . . .  Yn} and 
edge set E(T) .  Let (S, d) be a compact  metric space where to each ver- 
tex X i e V(T)  is associated a given point  x i E S. The problem is to as- 
sociate to each Y / e  V(T) some point  yj ~ S so as to minimize the 
edge-length of T: E w z e ~ ( r ) d ( w ,  z), where w, z • S are associated with 
vertices W, Z ~ V(T).  This arises in connection with the larger and gen- 
erally intractable Steiner problem, in which the only information 
given is the position of  Xl . . . . .  Xm • S and where both the structure of  
T and  the positions of  the y 1 .. . . .  Yn c S must be determined. This type  
of problem arises frequently in numerical taxonomy where the X i re- 
present different organisms, the x i their positions in some space (S, d)  
of characters or features, and the Y/ represent hypothetical  ancestral 
organisms. The minimality criterion corresponds to the economy or 
likelihood of the evolutionary explanation represented by the tree T. 

Here we present a dynamic programming solution for the more re- 
stricted problem of  finding the Yi'S, given T. Though a solution to a 
full Steiner problem can always be considered to involve a tree with 
vertices of  degree one or three only (allowing for edges of  length zero), 
our method also applies in contexts where the given tree has vertices of  
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higher degree. Our formulation of the problem and its solution subsumes 
and generalizes a number of previously published versions, in particular 
metric spaces, and these will furnish some of our examples. 

It suffices to consider the case where the X i are all terminal vertices 
(i.e. of degree one) of  T, and the Yj are all non-terminal (degree > 3). 
Other cases are easily reducible to this one, e.g. by decomposing T into 
the subtrees coincident with any non-terminal X i and optimizing each 
one separately, and by constraining Yi for any Yj of  degree <3 to take 
on the same value as one of its neighbours. 

Choose any Yr, r = 1, ..., n to be the root of the tree. Then for any 
vertex Z of  T, all vertices on the unique path between Z and Yr, in- 
cluding Z and Yr, are said to dominate  Z. The vertices dominated by 
any vertex Z determine the subtree T z dominated by Z. Those vertices 
Z1, ..., Zp(y) which are both dominated by Y and share an edge with Y 
are said to be immediate ly  dominated by Y. 

We then construct a number of functions f z  on S, one for each ver- 
tex Z c V(T). For i = 1, ..., m we se t fx i (X  i) = 0 a n d  , f x i ( X )  =- oo i f x  v~ x i. 
The f y  are then defined so that f y ( X )  is the minimal edge-length of  Ty 
given that Y is associated with x. From the principle of optimality it 
follows that 

p(lO 

f y  (x) = rain ~ [ ¢zi(Zi) + d(z i, x)]. 
(Z 1 . . . . .  Zp(g)) i = l  

Then m i n x ~ s f Y r ( X  ) =¢yr ( ) r )  is the minimal edge-length of T and the 
usual backtrack process starting from Yr determines opt imum locations 
y [  of all Yi. 

It might seem that in some metric spaces, this dynamic programming 
approach would be of little use, due to the difficulty or impossibility of 
computing the ¢z explicitly. However, in a diverse selection of spaces, 
such as those described below, it can be shown that the f y  must be cal- 
culated only over small subsets of S, leading to a feasible and rapid 
algorithm. 

The Manhattan metric space 

N 

S = R N , d(u, u) = ~ l u(J) u(J) l. 
J=l 

In this space, the coordinates y l (J ) ,  ...,yn(J) may be found sepa- 
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ra te ly  for  each J = l,  ..., N,  so that  it suffices to cons ider  S = R 1 . Sup- 
pose Yi domina tes  immedia te ly  X 1 . . . . .  Xp where x :  < ... < Xp. If  p is 
even, set q = ½ p -  1, and I ( Y i ) = [ X ~ p ,  Xkp+a]. I f  p is odd  set 

1 q = : ( p  - 1) - 1, and I (Y i )  = {X}(p+l) }. Then  f o r y  @ I ( Y i )  

q 

f y i ( y  ) = ~ (Xp_j  -- Xj+l) 
j=0 

and it will no t  be necessary to calculate fYi  elsewhere.  Now suppose Yi 
immedia te ly  domina tes  Z 1 . . . .  , Zp. Let  r 1 <~ ... <<, rp be the r ight-hand 
end-points  of  I(Zu(1)), ..., I(Zu(p)), and t 1 <<.... <~ tp the lef t -hand end- 
points  o f  I(Zo(1)), ..., I(Zv(p)),  where  u and v are sui table pe rmuta t ions  
o f  (1, . . . ,p) .  I f  I (Zx)  is a single poin t ,  it is listed b o th  as a t and an r. 

Suppose  r I < tp, r 2 < tp_ 1, ..., rl+ q < tp_q, but  the remaining rj are all 
greater  than or  equal  to  the remaining t k. Define 

l ( Y i )  = [ tp_q_ l ,  rq+2] 

and f o r y  ~ I ( Y  i) 

q 

f y i ( y  ) = ~ [ ( tp_/  -- r]+l) + fZu(j+o(rj+l) + fZv(p_])( tp_j )]  
j=0 

+ 
p - q - 2  

fZu( j+,)(Y) .  j=q+l 

The y.* t can then  be chosen,  since they  will all be in the I ( Y i ) ,  
i = 1, ..., n. A version o f  this a lgori thm, specific to  the case where all 
non- te rminal  vert ices have degree 3, was publ ished by Farris [2] ,  and is 
rou t ine ly  applied in the s tudy o f  evo lu t ion  using con t inuous  characters.  
Other  results on Steiner  trees in Manha t tan  space o f  d imens ion  two are 
given in [ 5, 7 ]. 

The space o f  qualitative characters 

S = ( 1 ,  ..., N} ,  d(I, J)  = 1 if  I , #  J .  

The case o f  3-valent non- te rminal  nodes  was investigated by Fi tch  
[3],  and the more  general case by Hart igan [6] .  Suppose  Yi dominates  
X 1 . . . . .  Xp. I f  J ~ S occurs  as f r equen t ly  or more  f r equen t ly  than any 
o ther  K E S among x 1 . . . . .  Xp, say ~ times, 

f r Y )  = p - 
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If  K ~ S occurs ~ - 1 times, 

f r i ( X )  = p - + 1 

and it will no t  be necessary to calculate the remaining values o f f D . W e  
say J is a best value and K a nex t  best value. 

Consider a Yi which dominates  jus t  Z 1 . . . . .  Zp .  Suppose J is a best 
value most  f requent ly  among the Z 1 . . . . .  Zp ,  say ~ times. Then 

f y i ( j )  = p - 

and if  K is a best value only ~ - 1 times, then  

f Y i ( K )  = p - o~ + 1. 

Then for each Yi it will be possible to choose y [  from among the best 
or next  best values. 

This algori thm is widely used in s tudying protein and DNA evolut ion 
and has been somewhat  generalized in [ 11 ]. 

A space o f  f i n i t e  s equences  
Let S be tile set of  (N - 1 )-ary sequences, and for a = (a(1), ..., a(r)), 

b - (b (1 )  . . . .  , b(s)) ,  where r ~< s 

d ( a ,  b )  = 1" + s max 
0~<~.~<r 

1 < i 1 <  . . .<iTt <~r 
l~< j l<  ... < j x  <~s 

[1 + 6(a(ik) ,  b ( J k ) ) l ,  
k=l 

where 6(u, v) = 1 if u = v, and 6(u, v)=  0 otherwise.  This metric,  re- 
presenting the m u t a t i o n a l  d is tance  between the two sequences, arises 
in the s tudy of  molecular  evolut ion as discussed by Ulam [16] and 
Sellers [ 15]. See [ 17] for another  in terpre ta t ion  of  this metric.  In [ 12] 
we show that  the search f o r y ~  . . . . .  Yn can be reduced to a large number  
(about  (2r) m, where r is the length of  the longest sequence among the 
X i = (Xi(1) . . . .  , x i ( r i ) ) ,  i = 1, . . . ,  m )  of  applications of  the algori thm in 
the simple metric space (S = { 1, ..., N ) ,  d(I, J)  = 1 - 8(I, J ) )  described in 
the preceding section. An application o f  these methods  to infer  the 
s tructure of  RNA in ancestral organisms is presented in [ 13, 14]. 



244 D. Sankoff, P. Rousseau /Locating the vertices of a Steiner tree 

Euc l idean  space 

N \ 1 / 2  

S = R N,  d(u, o) =(/~=l (U(J) - o(J))2 ) . 

It is, of course, in this metric space, especially the case N = 2, that 
the Steiner problem is classically posed. Making use of  the fact that in 
a Steiner tree the Yi must all be of degree 3 and the Yi must all be vertices 
of three angles of ~rr radians, Melzak [9, 10] and Gilbert and P011ak [4] 
have given an inductive algorithm which produces at most 2 n possible 
configurations for the set of n non-terminal vertices of  a given tree 
topology. 

For arbitrary T, however, where the Yi may have degree >3, no non- 
iterative algorithm is known. For n = 1, the problem is a version of  the 
Weber problem, or Fermat 's problem and Kuhn [8] has shown that a 
well-known gradient-based iteration converges to the unique solution 
for almost all starting approximations. This algorithm can be extended 
to apply to our problem when n > 1, though proofs of convergence 
would seem to be more difficult. 

The dynamic programming formulation can also be employed in an 
iterative manner in Euclidean space. Although not as simple as the gra- 
dient method, we sketch briefly the procedure for N = 2, for the sake 
of comparison with the other metric spaces we have studied. 

The principle of the algorithm is to find regions R i which necessarily 
contain the Y i ,  i = 1, ..., n, and to shrink these regions as much as pos- 
sible in successive iterations. 

(0) Divide a rectangle R containing all of the x i, i = 1 , . . . ,  m ,  into 
squares of side x/2s, and set R 1 = ... = Rn  = R .  

(i) For Y dominating only terminal nodes Xkl  . . . .  , Xk , ,  f g  and f r  are 
calculated just at the center point c of each square as fofows  

P 

f r  (c)  : c)  + ps  /=1 d(xkj '  

p 

f r (c)  = c) - v s .  - /'=1 d(xkj '  

For Y immediately dominating Z 1 . . . . .  Z p ,  set 
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P 

fy(c) = min ~ [fZk(Cx)+d(c k , c ) l+2p  s, 
(ca, ..., Cp) k=l 

P 

fy(c) = min ~ [fzx(Cx) + d(c x, c)] - 2ps, 
- (ca, ...,Cp) k=l - 

where the minima are taken over all those c i falling in the appropria te  
R]. The funct ions  f r  and _fr represent upper  and lower bounds  for f y  
valid no t  only  at c but  t h roughou t  the square o f  which c is the center. 

(ii) All squares for whichfrr(C) > mincfrr(C) could no t  possibly con- 
tain Yr, i.e., a y _ which m i n i m i z e s  fYr' so they  are ignored in all fur ther  
calculations offYr and f-Yr" Let R' r be the remaining region. 

(iii) I f  I11. immedia te ly  dominates  Yx and a new region R) has already 
been delimited,  then define R~ as follows. Any  square ~R~ with center  
c for which 

fyl~(C) + min d(e, c) 2s > min [ fy ,  (c) + max d(e, c) + 2s] 
eGR). c ~ R  k ~ e ~ R '  1" 

q¢ t 
could not  contain Yk. The remainder  cons t i tu te  R k. This step is re- 
peated until  all Yi are exhausted,  i = 1, ..., n. 

(iv) Redefine R i to be R} for i = 1, ..., n. If all the R i are now smaller 
than some critical area, stop. Otherwise divide the R i into squares of  
side x/2s, where s is suitably smaller than  in the present cycle, and return 
to step (i). 

See [1] for a biological in terpre ta t ion  of  Steiner trees in Euclidean 
space. 
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