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ABSTRACT

We review the combinatorial optimization problems in calculating edit distances between
genomes and phylogenetic inference based on minimizing gene order changes. With a view
to avoiding the computational cost and the “long branches attract” artifact of some tree-
building methods, we explore the probabilization of genome rearrangement models prior to
developing a methodology based on branch-length invariants. We characterize probabilisti-
cally the evolution of the structure of the gene adjacency set for reversals on unsigned circular
genomes and, using a nontrivial recurrence relation, reversals on signed genomes. Concepts
from the theory of invariants developed for the phylogenetics of homologous gene sequences
can be used to derive a complete set of linear invariants for unsigned reversals, as well as for
a mixed rearrangement model for signed genomes, though not for pure transposition or pure
signed reversal models. The invariants are based on an extended Jukes–Cantor semigroup.
We illustrate the use of these invariants to relate mitochondrial genomes from a number of
invertebrate animals.

Key words: sorting by reversals, breakpoints, Jukes–Cantor semigroup, metazoan phylogeny,
mitochondrial genome.

1. GENOMIC DISTANCES: HARD, MEDIUM, AND EASY

AS INDIVIDUAL GENES EVOLVE through the local processes of base substitution, deletion, or insertion,
several additional, nonlocal, evolutionary mechanisms also operate, at the genomic level.

Consider a circular signed genome with gene order c1 ¢ ¢ ¢ c n . The origin is arbitrary so that the genome
could also be written c iC1 ¢ ¢ ¢ c nc 1 ¢ ¢ ¢ c i . Label the genes found on one of the two complementary strands of
the genome with a plus sign and those on the other with a minus, resulting in g1 ¢ ¢ ¢ gn . (gi D c i or gi D ¡c i .)
By convention, we “view” the circle from the side that ensures that the positively labeled strand is the one read
in a clockwise manner, the other counterclockwise. Changing the sign on all genes is equivalent to viewing
the circle from the “� ip” side, and does not change the identity of the genome.

Consider any two pairs of adjacent genes ab and cd (possibly b D c or d D a). The operation that takes
g1 ¢ ¢ ¢ ab ¢ ¢ ¢ cd ¢ ¢ ¢ gn to g1 ¢ ¢ ¢ a ¡ c ¢ ¢ ¢ ¡bd ¢ ¢ ¢ gn (or, equivalently, to ¡gn ¢ ¢ ¢ ¡db ¢ ¢ ¢ c ¡ a ¢ ¢ ¢ ¡g1), as il-
lustrated in Fig. 1, is an example of a reversal (or inversion).

We may also consider unsigned genomes where the reading direction (i.e., strand) of each gene is unknown.
In Fig. 1, we may imagine the two strands superimposed and ignore the signs on the genes. In this case, the
reversal transforms g1 ¢ ¢ ¢ ab ¢ ¢ ¢ cd ¢ ¢ ¢ gn to g1 ¢ ¢ ¢ ac ¢ ¢ ¢ bd ¢ ¢ ¢ gn or, equivalently, to gn ¢ ¢ ¢ db ¢ ¢ ¢ ca ¢ ¢ ¢ g1 ;
in the former representation, reading clockwise at the top right of Fig. 1, genes b ¢ ¢ ¢ c were in the scope of the
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FIG. 1. Reading direction, sign assignment to genes, and reversal. Reading direction is indicated by arrowheads on
each DNA strand. The two genomes on the left are biologically identical; one view can be derived from the other by
� ipping the genome over and assigning signs to each gene according to whether it is on the “front” (i.e., read clockwise)
or the “back” (read counterclockwise) strand. The two views of the genome on the right result from reversing the segment
from gene b to gene c, inclusive. The commutativity of � ipping and reversal accords with the fact that it does not matter
biologically from which side we view the genome.

reversal; in the latter, reading clockwise at the bottom right, these genes were not in the scope of the reversal.
Though � ipping the genome does not change its identity, considering the two representations separately will
be important for probabilistic modeling in Section 4.

Consider any three pairs of adjacent genes ab, cd , and f g, where f g occurs in the interval d ¢ ¢ ¢ a. The
operation that takes g1 ¢ ¢ ¢ ab ¢ ¢ ¢ cd ¢ ¢ ¢ f g ¢ ¢ ¢ gn to g1 ¢ ¢ ¢ ad ¢ ¢ ¢ f b ¢ ¢ ¢ cg ¢ ¢ ¢ gn is a transposition. In some
models, g1 ¢ ¢ ¢ ad ¢ ¢ ¢ f ¡ c ¢ ¢ ¢ ¡bg ¢ ¢ ¢ gn can also be produced by a single transposition; in other models, it
requires a reversal as well.

The study of comparative genomics has focused on inferring the most economical explanation for observed
differences in gene orders in two or more genomes in terms of one or more of these rearrangement processes.
This has been formulated as the problem of calculating an edit distance between two linear or circular
permutations of the same set of objects, representing the ordering of homologous genes in two genomes.
Kececioglu and Sankoff (1994) introduced the problem of computing the minimum reversal distance between
two given permutations in the signed case, found tight lower and upper bounds, and implemented an exact
algorithm that worked rapidly for long permutations. Indeed, Hannenhalli and Pevzner (1995) showed that this
problem is only of polynomial complexity, and improved algorithms were given by Berman and Hannenhalli
(1996) and by Kaplan et al. (1997). Watterson et al. (1982) originally posed the problem for the unsigned case.
Kececioglu and Sankoff (1995) gave approximation algorithms and an exact algorithm feasible for moderately
long permutations. Bafna and Pevzner (1996) gave improved approximation algorithms and Caprara (1997)
showed it to be NP-complete.

Computation of the transposition distance between two permutations was considered by Bafna and Pevzner
(1995), but its NP-completeness has not yet been con� rmed. Edit distances that are a combination of reversals,
transpositions, and deletions have been studied by Sankoff (1992), Blanchette et al. (1996), and Gu et al. (1997).

The breakpoint distance between two genomes containing the same genes (Watterson et al., 1982) is the
number of pairs of adjacent genes in one genome that are not adjacent in the other. (In signed genomes, if a
and b are adjacent, so are ¡b ¡ a , but not ¡a ¡ b, ¡ab, a ¡ b, ba , ¡ba , or b ¡ a .) This is not an edit distance,
but tends to be highly correlated with such distances and has the advantage of being computable in linear time.

Note that although our discussion in this paper is phrased in terms of the order of genes along a chromosome,
the key aspect for mathematical purposes is the order and not the fact that the entities in the order are genes.
They could as well be blocks of genes contiguous in a number of species, conserved chromosomal segments
in comparative genetic maps (cf. Nadeau and Sankoff, 1998), or, indeed, the results of any decomposition of
the chromosome into disjoint ordered fragments, each identi� able in two or more genomes.

2. PHYLOGENY BASED ON GENE ORDER

The extension of edit distances for gene order data to � nding globally optimal phylogenetic trees is inherently
dif� cult. Not only are some of the measures of genomic edit distance in Section 1 computationally complex,
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but the extension of any of them, even the reversals distance for signed genomes (itself only of quadratic
complexity), to three or more genomes—multiple genome rearrangement—is NP-hard (Caprara, 1999). An
example is the “median” problem: � nd the “ancestor” genome that is closest to three given genomes. Heuristics
for multiple genome rearrangement are available (Hannenhalli et al., 1995; Sankoff et al., 1996), but they are
feasible only for small genomes.

The breakpoint distance has the advantage of being computable in linear time. Nevertheless its extension
to three or more genomes is also NP-hard (Pe’er and Shamir, 1998; Bryant et al., 1999). It does have a
simple reduction to the Traveling Salesman Problem (Sankoff and Blanchette, 1997) and can thus bene� t
from relatively ef� cient software available for the latter to solve examples on three genomes with moderate-
sized n . This can then be extended to the optimization of � xed-topology phylogenies (Blanchette et al., 1997;
Sankoff and Blanchette, 1998a), and ultimately to the search for optimal topologies (Blanchette et al., 1999).

In this kind of phylogenetic inference, breakpoint distance is used as a parsimony criterion. And parsimony
methods are among those that, under the simplest probabilistic models of mutation, may sometimes reconstruct
trees incorrectly when there are some very short and some very long branches (Felsenstein, 1978). This
problem, together with the computational complexity of all versions of the multiple genome rearrangement
problem, leads us to investigate the potential of branch-length invariants for inferring phylogeny based on
gene order comparisons. Phylogenetic invariants are based on probabilistic models of evolution, and in the
next section we will review how they were developed in the context of sequence evolution. Following this,
in Section 4 we will develop probabilistic models for gene order evolution preparatory to deriving invariants
for genome-level evolution.

3. INVARIANTS FOR MODELS OF SEQUENCE EVOLUTION

Consider the aligned DNA sequences of length n: X (1)
1 ¢ ¢ ¢ X (1)

n , . . . , X (N )
1 ¢ ¢ ¢ X (N )

n representing N species
whose history of evolutionary divergence, or phylogeny, is represented by a tree T with vertex set V and
edge set E , as in Fig. 2. The terminal vertices represent observed, or present-day, species. The nonterminal
vertices represent hypothetical ancestral species. For each i , the X (J )

i are the terminal points of a trajectory
indexed by T, taking on values in the alphabet of bases fA, C, G, Tg. This trajectory is a sample from a process
described by jE j 4 £ 4 Markov matrices with positive determinant all belonging to the same semigroup, one
matrix associated to each of the edges in E . Such semigroups have been proposed by Jukes and Cantor (1969),
Kimura (1980, 1981), Tajima and Nei (1984), Hasegawa et al. (1985), Cavender (1989), Jin and Nei (1990),
Tamura (1992), Nguyen and Speed (1992), Tamura and Nei (1993), Steel (1994), and Ferretti and Sankoff
(1995).

Aside from the fact that it has N terminal vertices, the tree T is unknown. In particular, the jE j matrices
associated with the edges are unknown, though the common semigroup from which they are drawn is given.
The central problem of phylogenetic inference is to estimate T D (V , E ), given only n data vectors each
consisting of the values at the N terminal vertices of the trajectory, of form (X (1)

i , . . . , X (N )
i ), where X ( J )

i is
the i th base in the J th DNA sequence.

In DNA evolution, it is simplest to consider rates of change between any two elements of fA, C, G, Tg to be
symmetric. With this assumption, it is usually preferable not to try to locate a root, or earliest ancestor node,
in the tree. Thus in this paper we will make the simplifying assumption that T is an unrooted binary branching
tree (all nonterminal vertices of degree 3), hence jV j D 2N ¡ 2, jE j D 2N ¡ 3, and will con� ne ourselves to
symmetric transition matrices.

FIG. 2. Sample trajectory X (¢)
i . Indexing tree T is unknown, but the same for all i D 1, . . . , n. Filled dots at terminal

vertices indicate N present-day species at which values of the process can be observed; open dots represent unobservable
ancestral species.



434 SANKOFF AND BLANCHETTE

Phylogenetic invariants are predetermined functions of the probabilities of the observable N -tuples. These
functions are identically zero only for T (and possibly a limited number of other trees), no matter which jE j
matrices are chosen from the semigroup. Evaluating the invariants associated with all possible trees, using
observed N -tuple frequencies as estimates of the probabilities, enables the rapid inference of the (presumably
unique) tree T for which all the invariants are zero or vanishingly small.

The chief virtue of the method of invariants is that it is not sensitive to “branch length,” i.e., to which
jE j matrices are chosen from the semigroup; for a matrix M , this length may be taken to be ¡log det M .
Methods of phylogenetic reconstruction that do not take account of the model used to generate the data may
be susceptible to an artifact that tends to group long lineages together and short lineages together.

Lake (1987) introduced linear invariants, studying the case N D 4 for a two-parameter (representing
transversion versus transition probabilities) semigroup originally suggested by Kimura (1980). At the same
time, Cavender and Felsenstein (1987) published quadratic invariants for a one-parameter semigroup of 2 £ 2
matrices. Subsequently a great deal of research has been carried out into both linear invariants, by Cavender
(1989), Fu (1995), Nguyen and Speed (1992), Steel and Fu (1995), Hendy and Penny (1996), and polynomial
invariants, by Drolet and Sankoff (1990), Sankoff (1990), Felsenstein (1991), Ferretti et al. (1993, 1994, 1995,
1996), Evans and Speed (1993), Steel et al. (1993), Szekeley et al. (1993), Steel (1994), Evans and Zhou
(1998), Hagedorn (1999), and Hagedorn and Landweber (1999).

Can we apply this theory to comparative genomics? After all, the various sets of breakpoints in a multi-
genome comparison do not resemble a multiple alignment of sequences in any way, so that the phylogenetic
invariants developed in the context of DNA base sequence data are not applicable. In Section 4 we will present
models for genome rearrangement processes analogous to the base substitution models for gene sequence
evolution, and examine the evolution of the adjacencies of pairs of genes over time. In one case, that of reversals
on unsigned genomes, we obtain a matrix semigroup of transition probabilities among these adjacencies. In
the other cases, the time-indexed matrices of transition probabilities do not form a semigroup. Nevertheless,
in Section 5, we propose a simpler model for the evolution of breakpoints, not based on any assumptions
about the rearrangement processes responsible for them, and use this to calculate a complete set of linear
invariants for the 15 binary unrooted trees where N D 5.

4. PROBABILITY MODELS FOR BREAKPOINT DISTANCES

We will propose models for reversals on unsigned and signed circular genomes, as well as for transpositions
(where it suf� ces to consider unsigned genomes only). We will assume in all three models that all pairs of
adjacent genes f g are equally likely to be disrupted, though this is a simpli� cation of biological reality
(Blanchette et al., 1999; Sankoff, 1999). Recall that, as in Fig. 1, two different pairs must be disrupted for
each reversal, and three for each transposition.

4.1. Reversals, unsigned case

For an unsigned circular genome, consider a continuous time process with rate l D 1. Each change of state
involves a reversal, where any two pairs of adjacent genes f g and hk are equally likely to be disrupted. We
focus on a particular gene f and, after each reversal, choose the representation of the resultant genome where
f has not been in the scope of the reversal. If f g is one of the two pairs chosen (probability 1/ n), any of
the n ¡ 1 genes other than f is equally likely to replace g. In the case g D h , gene g replaces itself and the
reversal is “invisible.” The matrix of transition probabilities for the occupant, at a speci� c time t , of the slot
in the genome originally occupied by g , whose columns and rows are labeled by the n ¡ 1 candidate genes,
is of form [1 ¡ (n ¡ 1)a] I C aJ , where I is the identity and J the matrix of 1s, and 1 ¡ (n ¡ 1)a D e¡t / (n ¡ 2) .
This is a generalization to n ¡ 1 £ n ¡ 1 matrices of the Jukes–Cantor (1969) semigroup of 4 £ 4 matrices.

4.2. Reversals, signed case

A model consisting only of random reversals on signed genomes, however, is quite different. Suppose
all genes are on the same strand and have a positive sign. Then if f g is disrupted by a reversal, the new
successor to f will necessarily have negative sign. All negatively signed genes (other than ¡f ) will have
probability 1/ (n ¡ 1) of replacing the successor to f . All positively signed genes will have probability zero.
So the Jukes–Cantor equiprobabili ty among the 2n ¡ 3 possible new successors does not hold. Moreover,
after the � rst reversal, the standedness of some genes will have changed, so that for the next reversal, some
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of the transition probabilities for successors will change. In other words, the process cannot be modeled by a
semigroup of matrices as in the unsigned case.

Without loss of generality, we label the genes from 1 to n, and after each reversal we � ip the genome if
necessary so as to ensure gene 1 always has a positive sign. In addition, we designate the position occupied
by gene 1 to be position 1, the position occupied by its successor to be position 2, and so on. Let xi be the
occupant of the i th position. After k reversals, the probability that the i th position will be occupied by gene
h is

Pk (x i D h) D Pk¡1(x i D h)Pr[h not in scope of k th reversal]

C
nX

jD2

Pk¡1(x j D ¡h)Pr [k th reversal moves h from j to i ]

D Pk¡1(x i D h)

µ
1 ¡

³
n

2

´¡1

(i ¡ 1)(n C 1 ¡ i )

¶

C
³

n

2

´¡1 nX

jD2

Pk¡1(x j D ¡h) min

»
i ¡ 1, n C 1 ¡ j,

j ¡ 1, n C 1 ¡ i

¼

For n D 4, this recurrence produces the pattern in Table 1.
It can be seen that it takes a relatively large number of reversals to “scramble” the genome enough so that

the successor to gene 1 is equally likely to be any other gene, with either sign.
To compare this rearrangement process to the one generated by the Jukes–Cantor semigroup, we de� ne

Pt (x i D h) as the probability that the i th position will be occupied by gene h at time t . Then

Pt (x2 D h) D
1X

kD0

e¡t t k

k!
Pk (x2 D h)

Table 2 illustrates the approach to Jukes–Cantor probabilities of the reversal on signed genomes model for
n D 4.

Table 2 shows that the transition probabilities remain rather inhomogeneous for a considerable time. For
t D 4, there have been about eight opportunities on the average for each of the four adjacencies to be disrupted
(two per reversal); nonetheless the probabilities are decidedly nonuniform, even among the genes where h 6D 2.

TABLE 1. APPROACH OF Pk (x2 D h ) TO EQUIPROBABILITY

h

k 2 3 4 ¡2 ¡3 ¡4

1 0.500 0 0 0.167 0.167 0.167
2 0.333 0.111 0.083 0.167 0.139 0.167
4 0.205 0.154 0.143 0.170 0.158 0.170
8 0.169 0.166 0.165 0.167 0.166 0.167

TABLE 2. APPROACH OF Pt (x2 D h) TO JUKES–CANTOR PROBABILITIES

h

Random reversals Jukes–Cantor

t 2 3 4 ¡2 ¡3 ¡4 2 Others

1 0.632 0.032 0.025 0.106 0.099 0.106 0.672 0.066
2 0.433 0.078 0.065 0.145 0.133 0.145 0.473 0.105
4 0.258 0.134 0.123 0.166 0.154 0.166 0.279 0.144
8 0.178 0.163 0.160 0.168 0.164 0.168 0.182 0.164
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For larger n, such as the case n D 37 of interest in Section 7 below, the situation is analogous. Even after
all the original adjacencies have had ample opportunity to be disrupted, the transition probabilities remain
quite different from Jukes–Cantor, especially for low or high values of h , e.g., §h D 2, 3, 36, or 37. But
the values of t of biological interest will be those during which a fair proportion of the original adjacencies
will be conserved. In other words, for those lengths of time for which we wish to apply these methods, the
Jukes–Cantor semigroup is not a good approximation for the random reversals model.

4.3. Transpositions

Finally, consider transpositions on unsigned circular genomes. Again, we assume a uniform probability
rate l D 1 of such events occurring. At each event, any choice of three different pairs of adjacent genes ab, cd ,
and f g is equally likely to be disrupted. Any of the n ¡ 2 genes other than f or g is equally likely to play
the role of b in replacing g as the neighbor of f . But the fact that g cannot replace itself as it could in the
unsigned reversal model leads to the same sort of dif� culty as with signed reversal. A Jukes–Cantor model
cannot be formulated.

5. EXTENDED JUKES–CANTOR MODEL FOR BREAKPOINTS

In this section, we construct a model for signed genomes. We will not assume that reversal, or any other
particular process, is the only mechanism of genome rearrangement. Reversal, transposition, or single-gene
movement could all play a role, in unknown proportions. Thus, we will not assume that only ¡h can replace
g, where h and not ¡h appears in the original genome, as in the pure reversals case. Indeed, inspired by
Jukes–Cantor, we assume that for any gene f , whose successor is g , the probability a that, over a given time
interval, the successor to f will have changed to h , is the same for all pairs of genes f and g , and for all
h 6D g . Note that h D ¡g is not excluded. There are 2n ¡ 3 such changes possible. The probability that g will
remain the successor is then 1 ¡ (2n ¡ 3)a. Note that 1 ¡ (2n ¡ 3)a > a since, for consistency’s sake, this
event, including both no change and reversed changes, is at least as likely as any other particular change.

We have in effect de� ned a 2n ¡ 2 £ 2n ¡ 2 Jukes–Cantor matrix M (a), where the rows and columns
are indexed by the 2n ¡ 2 possible signed genes different from f and ¡ f . The entries are all a except for
1 ¡ (2n ¡ 3)a on the diagonal. The model de� nes a semigroup that determines (stochastically) the trajectory
of the occupant of the “successor to f ” slot across a phylogeny. From it, if we were given the branch lengths,
we could calculate the probabilities of all possible N -tuples at the terminal vertices.

We are not, however, given the branch lengths, nor are we directly interested in these lengths, since our
goal is to � nd the correct tree topology in a way that is insensitive to them.

For a given f , and there are 2n of them, since we analyze f and ¡ f separately, the (2n ¡ 2)N different
N -tuples in the successor slot may be summarized by far fewer patterns. The 5-tuple gghhh has the same
probability as gg–h–h–h or hhkkk, because of the symmetries in the model. We identify these con� gurations
as follows: The � rst component of the N -tuple is labeled x , the second—if it is not also labeled x by virtue
of being identical to the � rst—is labeled y . The label z is reserved for the third different gene name in the
N -tuple, if there is one, and so on. If g and ¡g occur in the same N -tuple, they require two distinct labels.

In the case of 37 genes (74 distinct gene names), instead of more than a billion 5-tuples there are only 52
distinct con� gurations. In effect, this is the � fth term in the Bell series:

a(N ) D 1 C
N ¡1X

iD1

a(i )

³
N

i

´
D 1, 2, 5, 15, 52, 203, . . . ,

which is the number of ways of distributing � ve indistinguishable objects into � ve labeled boxes.

6. THE INVARIANTS

Using the algorithm of Fu (1995), we � nd the following complete set of phylogenetic linear invariants for
the k £ k Jukes–Cantor semigroup on the unrooted binary tree [(AB)C(DE)], as in Fig. 3.

The term “complete” is used in the sense that these 11 invariants below form a basis for the ideal of invariants.
We use the con� guration label, e.g., x yzxw , as a shorthand for the con� guration probability normalized by the
number of N -tuples it represents, or for simply the probability of any one of these N -tuples, e.g., Prob(hg-ghk).
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FIG. 3. Unrooted binary tree [(AB)C(DE)]. The other 14 trees are obtained by permutating the � ve labels.

x yzyx ¡ x yzyw ¡ x yzzx C x yzzw

x yzyz ¡ x yzyx ¡ x yzw z C x yzw x

x yzx y ¡ x yzxw ¡ x yzzy C x yzzw

x yzx z ¡ x yzx y ¡ x yzw z C x yzwy

x yzzx ¡ x yzzy ¡ x yzwx C x yzwy

x x yx y ¡ x x yyx C x x yyz ¡ x x yx z ¡ x x yzy C x x yzx

x yyx y ¡ x yyyx C x yyyz ¡ x yyzy ¡ x yyx z C x yyzx

x yx x y ¡ x yx yx C x yx yz ¡ x yx x z ¡ x yx zy C x yx zx

x yx zy ¡ x yx yz C x yyx z ¡ x yyzx C x yzyw ¡ x yzxw ¡ x yzwy C x yzw x

x yx x y ¡ x yx x z ¡ x yx yy C x yx zz ¡ x yyyx C x yyyz

C x yyx x ¡ x yyzz C x yzyy ¡ x yzx x ¡ x yzwy C x yzw x

x yx yy ¡ x yx zz ¡ x yyx x C x yyzz ¡ x yzyy C x yzx x

C k(x yx zy ¡ x yx zw ¡ x yyzx C x yyzw ¡ x yzwy C x yzw x )

In our context, k D 2n ¡ 2 D 72. There are other invariants, but they are not phylogenetic , i.e., they are zero
for all trees. For the unsigned reversal model in Section 4.1, k D n ¡ 1.

6.1. Remarks on the invariants

In examining the 11 invariants, we observe that 14 of the 52 possible con� gurations enter into no invariant.
Seven of these contain no information on the branching structure of the tree:

x x x x x x yyyy , x yx x x , x x yx x , x x x yx , x x x x y x yzwu

and so it is not surprising that they play no role here. The other seven are

x x yyy , x x yzw , x yzzz x x x yy, x x x yz, x yzww x x yzz

These are precisely the con� gurations that characterize one (� rst three con� gurations), the other (second three
con� gurations), or both (last con� guration) of the two internal edges of the tree [(AB)C(DE)]. They could be
expected to be among the most frequent con� gurations (along with the seven noninformative con� gurations
above and other con� gurations requiring no “extra steps” such as x yyzw or x yyyz). Were all the data
concentrated on these 14 con� gurations, then all the 11 invariant functions would be exactly zero.

6.2. Evaluating the invariants

To estimate the con� guration probabilities, we analyze the successor slot for each of the 2n gene names,
treating f and ¡ f separately, and calculating the relative frequency of each con� guration, normalized by the
number of different N -tuples that it contains. Though the con� gurations for different genes are not statistically
independent, the expected value of a relative frequency is nonetheless the probability that generated it. By the
linearity of the invariant functions, the expected value of each of the invariants evaluated using the relative
frequencies is zero for [(AB)C(DE)] and nonzero for some other trees.

Note that with 37 genes as in the application of Section 7 below, or 74 data points, the 52 con� gurations
will not all be estimated with any degree of accuracy. Neither will the invariant functions, especially since
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TABLE 3. COELOMATE MITOCHONDRIAL GENOMES COMPARED IN THIS INVESTIGATION,
WITH HIGHER TAXONOMIC LEVELS

Organism Phylum

HU Human CHO Chordate (deuterostome)
SS Asterina pectinifera (sea star) ECH Echinoderm (deuterostome)
BA Balanoglossus carnosus (acorn worm) HEM Hemichordate (deuterostome)
DR Drosophila yakuba (insect) ART Arthropod (protostome)
KT Katharina tunicata (chiton) MOL Mollusc (protostome)
LU Lumbricus terrestris (earthworm) ANN Annelid (protostome)

Citations: HU, Anderson et al. (1981); SS, Asakawa et al. (1993); BA, Castresana et al. (1998); DR, Clary
and Wolstenholme (1985); KT, Boore and Brown (1994); LU, Boore and Brown (1995).

much of the data will be concentrated on the con� gurations that do not even appear in the invariant formulae.
The situation would be much worse for N D 6 with 203 con� gurations, one of the reasons for not proceeding
beyond N D 5 here.

7. AN APPLICATION TO METAZOAN PHYLOGENY

The mitochondrion is an “organelle” occurring in profusion in animal, plant, fungal, and most other eukary-
otic cells. It has its own genome with a small number (<100) of genes, usually organized as a single circular
chromosome. The mitochondria l genome of many metazoan animals has been completely sequenced and
the genes they contain identi� ed. The breakpoints in comparisons among the gene orders of these genomes
have proven to contain much information pertinent to the inference of metazoan phylogeny (Blanchette et al.,
1999). The conservatism of certain genomes, such as human, Drosophila, and Katharina tunicata (a chiton),
versus the extreme divergence of related lineages, such as echinoderms or snails, i.e., the presence of both
short and long branches, is the chief dif� culty in the reconstruction of this phylogeny. In the next sections we
apply our theory of breakpoint invariants to explore three problems in the phylogeny of higher metazoans,
the true coelomates, based on the species in Table 3. These problems pertain to the protostome–deuterostome
split, the internal structure of the protostomes, and the internal branching order of the deuterostomes.

We will evaluate the 11 invariant relations, substituting the observed N -tuple frequencies for their prob-
abilities; with larger genomes these frequencies should satisfy the invariant relations more closely, but with
just 37 genes in the mitochondrial genome, we can only hope that the invariants associated with the true tree
T are better satis� ed than are those that are not associated with it. We carry out extensive simulations to assess
to what extent the trees we infer are likely to be the correct ones.

8. METAZOAN PHYLOGENY

Aspects of coelomate metazoan phylogeny are controversial (cf. Aguinaldo et al., 1997; Christofferson
and Araújo-de-Almeida, 1998); among the groupings in Table 3, only the split between deuterostomes and
protostomes seems undisputed. Eernisse et al. (1992), Giribet and Ribera (1998), and most others would group
annelids and molluscs as sister groups, with arthropods related to these at a deeper level. But there are still
proponents (e.g., Rouse and Fauchald, 1995) of a traditional grouping (Articulata) of annelids and arthropods
as sister taxa. Hemichordates have been grouped with the chordates as in Brusca and Brusca (1990) or in the
“Tree of Life” (Maddison and Maddison, 1995), but recent evidence by Wada and Satoh (1994) has led many
to group them closer to the echinoderms (cf. Ruppert and Barnes, 1994; Valentine, n.d.).

Aside from these unsettled questions, efforts to infer phylogeny based on distances between mitochondria l
gene orders have tended to group Drosophila closer to human than the echinoderms are (e.g., Sankoff et al.,
1992; Blanchette et al., 1999, Fig. 4a and 4b), an artifact of the mitochondrial genome of the latter being
highly divergent, the former two relatively conservative.

Figure 4 contrasts three phylogenies, one representing the “Tree of Life” (Maddison and Maddison, 1995),
another the summary phylogeny by Valentine (n.d.) on the University of California Museum of Paleontology
website, and the third the Drosophila–human artifact.
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FIG. 4. Three alternative views of coelomate evolution.

9. TEST PROCEDURES

Different invariants contain different numbers of con� gurations and, when evaluated with frequency data on
the correct and incorrect trees, have different ranges, so that it may be misleading to compare trees on the basis
of how close they are to zero with respect to all the invariants. To standardize the comparisons, we simulated
10,000 trees of form [(AB)C(DE)] on 37-gene genomes, with all branches disrupted by R random reversals,
and compiled the distribution of each the 11 invariants evaluated using the sample con� guration frequencies.
The value of R is determined by counting the number of breakpoints on a minimum breakpoint tree (Sankoff
and Blanchette, 1998a) and dividing by 2h(2N ¡ 3), each reversal contributing up to two breakpoints, and
there being 2N ¡ 3 branches on an unrooted binary tree. The parameter h corrects for “multiple hits”—we
used h D 0.75. This only approximates the situation with the mitochondrial data (some lineages are clearly
much longer than others), nonetheless the 11 test distributions constructed this way can serve as comparable
scales to judge the � t of each of the 15 possible trees.

The score for each combination of tree and invariant can thus be transformed into a signi� cance level.
(Highly signi� cant implies a poor � t.) A summary score for each tree can then be produced by taking the
product of the 11 signi� cance levels.

10. RESULTS

In this section, we will � rst present and comment on the trees selected by the use of invariants. We then
compare these to the most parsimonious trees based on the same data, but simply minimizing the total number
of changes (in terms of presence versus absence) over the tree for each possible adjacency of two genes. (See
Gallut, 1998, for an approach based on three-gene adjacencies, also applied to mitochondrial gene orders of
invertebrates.) These will both be compared to the minimum breakpoint trees in the sense of Section 2, i.e.,
minimizing the sum over all branches of the number of breakpoints between the genomes at each endpoint.

Note that the latter two methods, while both relying on a parsimony criterion, are quite distinct, and may
have different results. It is not hard to show that if A is the cost of the most parsimonious tree, using presence
versus absence of all possible gene adjacencies as characters, then A · 2B , where B is the minimum sum of
the breakpoint costs over all branches of the same tree. Consider the three (unsigned) circular genomes in the
top of Table 4.

In calculating the breakpoint distance, an optimal median genome is found to be 1 2 3 4 5 6, with breakpoint
distance 3 from each of the � rst two data genomes and zero from the third, for a total tree distance of 6. The
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TABLE 4. DATA SETS CONTRASTING ADJACENCY

PARSIMONY AND BREAKPOINT DISTANCE

1 2 5 6 4 3
1 3 2 5 4 6
1 2 3 4 5 6

1 2 3 4 5 6
1 2 3 4 5 6
1 3 5 2 6 4

18 gene adjacencies in the data, however, consist of 9 pairs, each occurring twice and absent once, for a total
cost of 9, so that A < 2B .

In contrast, for the three genomes in the bottom of Table 4, we again have B D 6 based on median genome
1 2 3 4 5 6, but A D 12 D 2B . The variability in the relation between A and B implies that the optimal
breakpoint tree does not need to coincide with the most parsimonious tree in terms of adjacencies, and indeed
it generally does not.

10.1. Deuterostomes and protostomes

The � rst subset of the data to be examined includes HU, SS, DR, KT, and LU, in order to compare the
results with those of Sankoff et al. (1992) and Blanchette et al. (1999). In this case R D 10.

The best three trees manifested scores of 2 £ 10¡12 , 6 £ 10¡15 , and 7 £ 10¡17 . The � rst of these was
consistent with the CAL tree in Fig. 4, and the third was the artifactual tree in that � gure. The second also
contained the HUCDR artifact.

Nevertheless, according to the best tree, our method succeeded in correctly grouping CHO and ECH,
despite the discordance of branch lengths that defeat distance-matrix-based attempts. And it also con� rmed
the ANNCMOL grouping in CAL versus the TOL grouping of ANNCART.

10.2. The Balanoglossus data

The recently sequenced mitochondria l genome of Balanoglossus carnosa allows a more detailed investi-
gation of deuterostome–protostome branching. Here we focus on the deuterostome–arthropod relationship,
retaining Katharina as a second protostome, but dropping Lumbricus from the analysis. The simulations
for constructing the statistical tests were redone with R D 6. The results in this analysis clearly con� rm the
deuterostome grouping. The three best trees, with summary scores 10¡7 , 10¡7, and 6 £ 10¡8 , all group the
deuterostomes together and no other tree scores better than 3 £ 10¡15 (which is the score when DR groups
more closely with HU and BA than SS does). In this analysis the best tree is consistent with the TOL tree in
Fig. 4, while the CAL tree is third best.

10.3. A comparison of methods

Table 5 shows how the candidate phylogenies fare under the method of invariants compared to two parsimony
approaches. Both the methods of invariants and adjacency parsimony operate on the con� guration frequencies
in the gene-successor data described in Section 6.2, in the former case as detailed in that section, and in the
latter by counting total “extra steps” required by all data con� gurations on each tree. The third method
minimizes the sum of the breakpoint distances over all branches of the tree, involving the optimization of
ancestral genomes (Blanchette et al., 1999).

It can be seen that the two methods operating on gene-successor con� guration frequencies tend to agree as
to the best tree, although the method of invariants seems slightly less susceptible to the HUCDR artifact. The
breakpoint distance method does not resolve among the best trees for two of the data sets, but whether this is
a virtue or a shortcoming remains to be seen.

All of the analyses support the protostome–deuterostome split, and they all support the annelid–mollusc
grouping as a sister group to the arthropods. On the other hand, they do not agree on the internal grouping of
the deuterostomes. The breakpoint distance gives equal support to an ECHCCHO grouping (which is of little
credibility) as to the ECHCHEM analysis, whereas the other methods favor a more traditional CHOCHEM
grouping.
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TABLE 5. COMPARISON OF THREE METHODS ON THREE DATA SETS

Adjacency Breakpoint
Tree Invariants parsimony distance

TOL (HU SS)[(DR LU) KT] 5¤ 5 3¤

CAL (HU SS)[DR (LU KT)] 1 1¤ 1
HU [(HU DR) SS](LU KT) 3 1¤ 5¤

C [(HU DR) LU](SS KT) 4 6¤ 3¤

DR [(HU DR) KT] (LU SS) 2 3 2

TOL [(HU BA) SS](DR KT) 1 1 1¤

CAL [HU (BA SS)](DR KT) 3 3 1¤

[(HU SS) BA](DR KT) 2 2 1¤

HUCDR [(HU BA) DR](SS KT) 4 4 4¤

CAL [HU (BA SS)][DR (LU KT)] (3) 5 1¤

[(HU BA) SS][DR (LU KT)] (1) 1 3
[(HU SS) BA][DR (LU KT)] (2) 4 1¤

[(HU BA) SS] [LU (DR KT)] 2¤ 13¤

HUCDR [(HU BA) DR][SS (LU KT)] 2¤ 13¤

Top, without BA; middle, without LU; bottom, all six species. Figures indicate rank of trees built
using the same method on the same data sets. Asterisks indicate ranks that are tied with at least one other.
Parentheses indicate six-species supertree based on best tree in � ve-species analysis without BA, combined
with three best trees in � ve-species analysis without LU. Note that for � ve-species analyses, ranks are out
of 15, while for six species, they are out of 105.

10.4. What is the sensitivity of our method with small genomes?

A more clear-cut result of our method would see the tree T emerge with no invariant scoring less than
and all other trees scoring less than (i.e., “signi� cant”) on at least one invariant, for some threshold .
We simulated N D 5 data for a range of genome sizes, from n D 8 to n D 140, with n / 4 random reversals
disrupting gene order on each branch of the tree, with 2000 repetitions of the experiment for each n . (Recall
from Section 9 that for n D 37, the minimum breakpoint tree warrants R D 10, approximately n/ 4.)

The form of the invariants ensures that each converges to a limit, zero for T and nonzero for each of several
other trees. If is small enough, and n is large enough, only the invariants for T will be below the signi� cance
level. Results of our simulations in Fig. 5 indicate that for small enough to exclude all trees except
T—a “true” threshold, we require n D 140 at least. For smaller n, the tree T is also likely to be “rejected”
by at least one invariant. For n D 37, T is the sole tree to pass the tests of all 11 invariants with D 0.01
only 15% of the time. If is relaxed to a value that will maximize acceptance of T only, say D 0.1, only

FIG. 5. Proportion of trees correctly inferred as a function of genome length and . Curves smoothed using a window
size of three data points.
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FIG. 6. Proportion of trees correctly inferred as a function of and number of rearrangements I .

40% can be attained for n D 37. This explains our recourse to more equivocal, statistical criteria described in
Section 9. Another set of simulations tested the performance of our method on N D 5, n D 37 data for a range
of branch lengths, the same on each branch. We used 10,000 simulations per branch length. As can be seen
in Fig. 6, the rate of success drops off rapidly with branch length and decreasing so that with 10 random
reversals per branch, successful discrimination in favor of T is 40% for a threshold value of D 0.1, and for
20 reversals it is only 25%; with 10 reversals and D 0.01, the success rate is only 17%.

11. FURTHER WORK

Though much probabilistic modeling of gene sequence changes has been incorporated into phylogenetic
analysis, very little research has gone into mathematical approaches to phylogenetics based on gene order,
and even less, previous to the present undertaking, into probability models for the evolution of gene order
(see, however, Dalkie, 1998).

Of both mathematical and biological interest is whether this theory can be developed in the direction of other
semigroups. Linear invariant theory is well developed, for the Kimura models (e.g., Steel et al., 1993) and
others, and biological interpretation in the breakpoint context is possible. Even though an exact representation
of models such as random reversals only on signed data (Section 4) in terms of semigroups of matrices is not
possible, signi� cantly better approximations than Jukes–Cantor may well be feasible.

In comparing the invariant method to the two parsimony methods, we cannot do more based on these
small applications than note that in one example, in Section 10.1 and Table 5, adjacency parsimony did not
discriminate against a branch-length artifact, while the invariants, based on the same data, did.

Perhaps the most promising direction for the method of invariants lies toward larger genome size—plastids,
prokaryotes, and, when more eukaryotes are completely sequenced, nuclear genomes. Multichromosomal
genomes are handled as easily as single-chromosome ones, since the model pertains to single breakpoints and
not to whole fragments, which behave differently in reversals, transpositions, and reciprocal translocations.
Increasing n only linearly increases the time to compute con� guration frequencies, which is negligible. Our
simulations in Section 10.4 indicate that the method should be able to identify the true tree with a high degree
of accuracy for large genomes. Note that heterogeneity of rates is not a problem with this approach, either
from lineage to lineage or from gene to gene in their quantitative susceptibility to be adjacent to breakpoints;
this stems from the linearity of the invariants. Thus the fact that tRNA genes may be more mobile (Blanchette
et al., 1999), either because they tend to be at the end of rearranged fragments or because they may be
individually transposed in the genome, does not affect the results.

Enlarging the method to handle six species and perhaps more is quite feasible, though the bookkeeping
involved with hundreds of invariants is considerable. Beyond this, some way of handling decomposition of
the problem, such as we used in Sections 10.1 and 10.2, might be systematized.

The biological results obtained here include the relatively early branching of arthropods within the pro-
tostomes, and the grouping of the hemichordates with the chordates, though the latter is equivocal. Our
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method clearly distinguishes between deuterostomes and protostomes, which is not always the case with
other approaches using rearrangement data.
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