
“bti1037” — 2005/6/10 — page 502 — #1

BIOINFORMATICS Vol. 21 Suppl. 1 2005, pages i502–i508
doi:10.1093/bioinformatics/bti1037

Reversal distance for partially ordered genomes

Chunfang Zheng, Aleksander Lenert and David Sankoff ∗

University of Ottawa, 585 King Edward Avenue, Ottawa K1N 6N5, Canada

Received on January 15, 2005; accepted on March 27, 2005

ABSTRACT
Motivation: The total order of the genes or markers on a
chromosome inherent in its representation as a signed per-
mutation must often be weakened to a partial order in the
case of real data. This is due to lack of resolution (where sev-
eral genes are mapped to the same chromosomal position)
to missing data from some of the datasets used to compile a
gene order, and to conflicts between these datasets. The avail-
able genome rearrangement algorithms, however, require total
orders as input. A more general approach is needed to handle
rearrangements of gene partial orders.
Results: We formalize the uncertainty in gene order data by
representing a chromosome from each genome as a partial
order, summarized by a directed acyclic graph (DAG). The
rearrangement problem is then to infer a minimal sequence
of reversals for transforming any topological sort of one DAG
to any one of the other DAG. Each topological sort repres-
ents a possible linearization compatible with all the datasets
on the chromosome. The set of all possible topological sorts is
embedded in each DAG by appropriately augmenting the edge
set, so that it becomes a general directed graph (DG). The DGs
representing chromosomes of two genomes are combined to
produce a bicoloured graph from which we extract a max-
imal decomposition into alternating coloured cycles, and from
which, in turn, an optimal sequence of reversals can usually
be identified. We test this approach on simulated incomplete
comparative maps and on cereal chromosomal maps drawn
from the Gramene browser.
Contact: sankoff@uottawa.ca

1 INTRODUCTION
Structural rearrangement within a chromosome can be
modeled by the transformation of one signed permutation to
another by means of reversals (inversions). Analyses that com-
pare gene orders, such as the Hannenhalli–Pevzner algorithm
(1999), infer the smallest number of reversals to transform
one order to another, i.e. to transform an arbitrary string con-
taining either one positive or negative occurrence of each
of {1, 2,. . . ,n} to the reference order 1, 2,. . . ,n, where the
allowed operations consist of reversals of any substring (while
changing the polarity of each term in the substring).

∗To whom correspondence should be addressed.

The total order of a chromosome inherent in its represent-
ation as a permutation or string must often be weakened in
the case of realistic data, where mapping information only
suffices to partially order the set of genes on a chromo-
some. Unfortunately, the concepts and methods of genome
rearrangement pertain only to totally ordered sets of genes,
markers or segments, and are meaningless in the context of
partial orders.

Here we extend genome rearrangement theory to the more
general context where both gene orders are represented by
directed acyclic graphs (DAGs) rather than linear strings. The
use of DAGs reflects uncertainty of the gene order on chromo-
somes in the genomes of most advanced organisms. This may
be due to lack of resolution (where several genes are mapped
to the same chromosomal position) to missing data from some
of the datasets used to compile a gene order and/or to conflicts
between these datasets.

We construct the DAGs for each species from two or more
partially incompatible databases, or a single low-resolution
dataset. The lack of order information in each dataset, due to
missing genes or missing order information, is converted into
parallel subpaths within the DAG in a straightforward manner.

Outright conflicts of order create cycles that must be broken.
We suggest a number of reasonable alternative conventions
for breaking cycles. This is not the focus of our analysis,
however; whatever convention is adopted does not affect our
subsequent analysis.

The genome rearrangement problem then isto infer a
sequence of reversals which transform a linearization (topo-
logical sort) of the DAG for one genome to a linearization
of the DAG for the other genome, minimizing the number of
reversals required. Each topological sort represents one of
the possible linearizations of all the partial information in
all the datasets on a genome. We embed the set of all
possible topological sorts in each DAG by appropriately aug-
menting the edge set, so that it becomes a general directed
graph (DG).

We then combine the edges of the two DGs, represent-
ing two genomes, to produce a single large bicoloured graph
from which we extract a maximal decomposition into altern-
ating coloured cycles, so that a Hannenhalli–Pevzner type of
procedure can then generate an optimal sequence of rearrange-
ments. We focus here on obtaining the cycle decomposition;
this is equivalent to optimally linearizing the partial orders, so

i502 © The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org

 at U
niversity of O

ttaw
a on M

arch 15, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


“bti1037” — 2005/6/10 — page 503 — #2

Reversal distance for partially ordered genomes

that finding the actual rearrangements can be done using the
previously available algorithms.

We test our method on simulated incomplete comparat-
ive maps and on homologous maize and sorghum chromo-
somal maps.

2 GENE ORDER DATA
Maps of genes or other markers produced by recombination
analysis, physical imaging and other methods—no matter
how highly resolved—inevitably are missing some (and usu-
ally most) genes or markers and fail to order, or incorrectly
order, some pairs of neighboring genes with respect to each
other. Even at the ultimate level of resolution, that of genome
sequences, the application of different gene-finding protocols
often gives maps that differ at the level of gene content.

Moreover, experimental methodologies and statistical map-
ping procedures inevitably give rise to some small proportion
of errors: two neighbouring genes incorrectly ordered, a gene
mapped to the wrong chromosome, a gene incorrectly named
or annotated. However it is not these errors we focus on in this
paper, but the more widespread issues of lack of resolution and
genes missing from a map. These should not be considered
errors; they are normal and inherent in all ways of construct-
ing a map, except for highly polished genome sequencing with
accurate gene identification (something that has not yet been
achieved in the higher eukaryotes, even for humans).

A linear map that has several genes or markers at the same
position p, because their order has not been resolved, can
be considered a partial order, where all the genes before
p are ordered before all the genes atp, and all the genes
at p are ordered before all the genes followingp, but the
genes atp are not ordered amongst themselves. We call this
proceduremake_po.

For many genomes, there exist two or more gene maps
constructed from different kinds of data or using different
methodologies. There is only one meaningful way of com-
bining the order information on two (partially ordered) maps
of the same genome containing somewhat different subsets
of genes, as long as there are no conflicting order relations
(a < b,b < a) in the two, namely by taking the union of the
partial orders, and extending this set through transitivity. This
procedure iscombine_po.

All the compatible partial order data on a genome can be
represented in a minimal DAG whose vertex set is the union of
all gene sets in the contributing gene maps, and whose edges
correspond to just those order relations that cannot be derived
from other order relations by transitivity. The outcome of this
construction,dagger, is illustrated in Figure 1.

On the other hand, if different maps of the same genome
conflict, there are a variety of possible ways of resolving the
conflict or, equivalently, of breaking any potential cycles in
the construction of the DAG. One way is to delete all order
relations that conflict with at least one other order relation.

Fig. 1. Construction of DAGs from individual databases each con-
taining partial information on genome, due to missing genes and
missing order information, followed by construction of combined
DAG representing all known information on the genome. All edges
directed from left to right.

Another is to delete a minimal set of order relations so that
all conflicts can be resolved. Still another is to ignore a min-
imum set of genes that will accomplish the same end. Any of
these approaches, or others, which we denote by the generic
routine nameresolve, will produce results appropriate for our
subsequent analysis.

3 THE DG EMBEDDING OF TOPOLOGICAL
SORTS

A DAG can generally be linearized in many different ways, all
derivable from a topological sorting routine. All the possible
adjacencies in these linear sorts can be represented by the
edges of a DG containing all the edges of the DAG plus two
edges of opposite directions between all pairs of vertices, that
are not ordered by the DAG. This is illustrated in Figure 2.
The routine for constructing this graph isdgger.

4 THE ALGORITHM
4.1 Background
Before discussing our algorithm for comparing DGs derived
from our DAG representations, we review the existing tech-
nology for the special case when the DAG and the associated

i503

 at U
niversity of O

ttaw
a on M

arch 15, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


“bti1037” — 2005/6/10 — page 504 — #3

C.Zheng et al.

Fig. 2. Edges added to DAG to obtain DG containing all lineariza-
tions as paths (though not all paths in the DG are linearizations of
the DAG!). Each arrow represents a set of directed edges, one from
each element in one set to each element of the other set.

DG represent a total order, which is the traditional subject of
computational comparative genomics.

The Hannenhalli–Pevzner construction of a shortest
sequence of reversals for transforming one genomeR, of
length n, into anotherB begins by combining the signed
permutation representations of the two genomes. The fol-
lowing proceduremake_bicoloured produces a bicoloured
graph on 2n + 2 vertices that decomposes uniquely into a set
of alternating-coloured cycles. Each gene or markerx determ-
ines two vertices,xt andxh, to which two additional vertices
s andf (for start and finish) are added. One colour edge, say
red, is determined by the adjacencies inR. If x is the left-hand
neighbour ofy in R, and both have positive polarity, thenxh
is connected by a red edge toyt. If they both have negative
polarity, it is xt that is joined toyh. If x is positive andy
negative, orx is negative andy positive,xh is joined toyh,
or xt is joined toyt, respectively. Ifx is the first gene, then
s is joined toxt or xh depending on whetherx has positive
or negative polarity, respectively. Ifx is the last gene, thenf
is joined toxt or xh depending on whetherx has negative or
positive polarity.

Black edges are added according to the same rules, based
on the adjacencies in genomeB.

It can be seen that each vertex is incident to exactly one
red edge and one black edge and that the bicoloured graph
decomposes uniquely into a number of alternating cycles. If
the number of cycles isc, then the number of reversalsr
necessary to convertR into B is given by the Hannenhalli–
Pevzner equation:

r = n + 1 − c + h + f (1)

whereh andf are corrections (for ‘hurdles and fortresses’),
which are usually zero for simulated or empirical data. For
simplicity of exposition, we will ignore these corrections here,

Fig. 3. If ab andcd are DAG edges, then the two non-DAG edgesda
andbc are mutually exclusive, since together they lead to the wrong
order fora andb.

though an eventual full-scale program will incorporate them
with no difficulty.

4.2 Generalization to partial orders
The routinemake_bicoloured can also be applied to the set
of edges in the DGs for the two genomes. In the resulting
graph, each of the DAG edges and both of the edges connect-
ing each of the unordered pairs in the DG represent potential
adjacencies in our eventual linearization of a genome. Then

genes or markers determine 2n + 2 vertices and the potential
adjacencies determine the red and black edges, based on the
polarity of the genes or markers. Where the construction for
the totally ordered genomes contains exactlyn + 1 edges of
each colour, in our construction in the presence of uncertainty
there are more than 2(n+1)potential edges, but only 2(n+1)

can be chosen in our construction of the cycle graph, which
is equivalent to the simultaneous linearization by topological
sorting of each genome.

It is this problem of selecting the right subset of edges that
makes the problem difficult (and, we conjecture, NP-hard).

The choice of certain edges generally excludes the choice
of certain other ones. This is not just a question of avoiding
multiple edges of the same colour at a vertex. There are more
subtle conflicts particularly involving the non-DAG edges, as
illustrated in Figure 3.

Our approach to this problem is a depth-first branch-and-
bound search,find_cycle_decomp, in the environment of
continually updated partial orders for each genome. The
strategy is to build cycles one at a time.

Initially all edges in the DG for each genome are ‘eligible’
and all vertices are ‘unused’. We arbitrarily choose an initi-
ating vertexu in the bicoloured graph as well as an edgeε

incident to it leading to another vertexv. All remaining edges
of the same colour, incident to eitheru or v, immediately
become ineligible. For certain choices ofε (detailed below),
the partial order must be updated through the addition of the
order relation represented byε, plus all others involving one
vertex ordered beforeu and one ordered afterv.

At each successive stage of the search we add an eligible
edgeε that does not conflict with the current partial order,
incident to the most recently included vertexu to extend
the current cycle or path to some as yet unused vertexv or,
preferably, to complete a cycle.

When an edgeε is added, the partial order for the genosome
containingε is updated, if necessary, including wheneverε is
not a DAG edge. Ifε is in the DAG, no update is necessary

i504

 at U
niversity of O

ttaw
a on M

arch 15, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


“bti1037” — 2005/6/10 — page 505 — #4

Reversal distance for partially ordered genomes

(since the initial partial orders for the branch and bound are
determined by the DAGs), unlessu or v is incident to more
than one eligible edge of the same colour asε, in which case
additional order is imposed by the choice ofε. All remaining
edges of the same colour incident tou orv are made ineligible
andu is now ‘used’.

When a cycle is completed, the initiating vertex also
becomes ‘used’. Any unused vertex can then be chosen to
initiate a new cycle.

The search is bounded by using the fact that a cycle has at
least two edges, and that a complete solution, representing
some linearization, optimal or not, always has 2n + 2 edges.
Suppose the current best solution hasc∗ cycles. Suppose, fur-
ther, the construction now underway is at a point where there
arec′ cycles, and this has usedm edges. This means there are
only 2n+2−m edges left to choose from. Then the final num-
ber of cycles when the current construction is terminated will
be no more thanc′ +(2n+2−m)/2 = c′ +n+1−m/2. So if

c′ + n + 1 − m/2 < c∗, (2)

this branch of the search is abandoned and backtrack-
ing begins.

Backtracking is also invoked if no cycles can be made up
of the unused vertices. During backtracking, when an edge is
removed, so are the extra partial order relations it induced, as
well as any ‘eligible’ and ‘unused’ status it annulled in edges
and vertices, respectively.

An initial value of c∗ can be found using any lineariz-
ations of the two DAGs or simply by running the depth-
first algorithm until a first complete decomposition of the
bicoloured graph is found.

We have implemented and tested our algorithm for moder-
ately sized examples as a proof of principle for the synergy of
linearization and reversal inference. We note that, aside from
computing the time reduction due to the application of the
bound in Equation (2), as the search proceeds deeper into the
search tree, large numbers of competing edges are excluded,
each time an edge is selected, both because vertices are being
used up and because of conflicts involving non-DAG edges,
such as that in Figure 3.

4.3 Summary of the analysis
Figure 4 summarizes the steps in our analysis, starting from
several sets of incomplete maps for each of two genomes,
and outputting two totally ordered maps related by a minimal
reversal scenario.

4.4 Complexity issues
The major time and space costs of our method are of course due
to the branch and bound procedure infind_cycle_decomp.
The number of potential edges to be considered for inclusion
in the decomposition can grow asO(n2O2), whereS is the
maximum number of parallel paths through the DAGs, but the

Input: One or more incomplete maps for each of 2 genomes
Remove: Markers missing from all maps for either genome
For each map,

make_po
For each genome,

(resolve)
combine_po
dagger
dgger

(Add signs to markers)
make_bicoloured
find_cycle_decomp
Output: Optimal cycles and linearizations

Fig. 4. Summary of steps in simultansous linearization and reversal
inference. Steps in parentheses—see Sections 2 and 6—not required
for signed maps with no outright intra-genome conflicts.

depth of our search tree remainsO(n). The costs at each step
are dominated by the necessity of checking and updating a
partial order matrix of sizeO(n2).

5 SIMULATED DATA
In Section 6 we will apply our algorithm to real genomes.
Here, we simulate DAGs representing varying levels of uncer-
tainty, modeling lack of resolution of gene order, and missing
genes in two datasets.

For a totally ordered genome containingn genes, we simu-
latem datasets based on two parametersp andq, representing
the probability that any two adjacent genes are not resolved
in a data set (i.e. are mapped to the same position) and the
probability that any particular gene is deleted (i.e. does not
show up on the map), respectively.

In any particular dataset, the genes that are not deleted are
ordered as in the underlying genome, except when two or more
genes are mapped to the same position. These are considered
to have no order among them.

The second genome is derived from the first by a series ofr

random reversals. Thenm datasets are constructed as for the
original genome.

The information contained in allm datasets for each genome
is then fed into the analysis of the previous section.

We carried out simulations withn = 12 andr = 3 reversals.
We testedp = 1/3 andp = 2/3 and the same two values forq.
We also triedm = 2 andm = 4. The goal was to see how
much uncertainty could be introduced into the system without
losing the ability to infer the 3 reversals.

In five runs with each combination ofp, q andm, the pro-
gram recovered 3 reversals in a majority of runs, except where
both p andq are 2/3. Both form = 2 andm = 4, enough
uncertainty was introduced so that linearizations compatible
with only 2 or 1 reversals were generated.

Thus, except with very high rates of missing and superim-
posed genes, enough information is retained in the incomplete

i505

 at U
niversity of O

ttaw
a on M

arch 15, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


“bti1037” — 2005/6/10 — page 506 — #5

C.Zheng et al.

maps that our method can usually recover the correct reversal
history intervening between the two genomes.

6 APPLICATION TO CEREAL GENOMES
To illustrate the application of our method to real data,
we choose an example that is non-trivial but that is small
enough to verify visually. The Gramene database, http://www.
gramene.org/, contains a variety of maps of the rice, maize,
oats and other cereal genomes. We examined two datasets
each for the relatively closely related corn and sorghum gen-
omes: the ‘IBM neighbors’ and the ‘IBM2 neighbors 2003’
maps for chromosome 3 of maize (Polacco and Coe, 2002,
http://www.maizegdb.org/ancillary/IBMneighbors.html) and
the ‘Paterson 2003’ and ‘Klein 2004’ (Bowerset al., 2003;
Menz et al., 2002) maps of the chromosome labeled A and
LG-03, respectively, of sorghum. (We chose the two versions
of ‘IBM neighbors’ for illustrative purposes, to obtain a large
enough set of markers homologous with sorghum markers,
and containing typical kinds of differences between datasets
for a single genome, despite their being drawn from successive
updates of the same database.)

We extracted all markers indicated as having a maize–
sorghum homologous pair involving at least one of the datasets
from each species.

The 24 markers, their ‘IBM2 neighbors 2003’ names and
their orders in the four databases are listed in Table 1.

The two DAGs constructed from the maize sets and the
soghum sets by the routinescombine_po and dagger are
depicted in Figure 5.

Our construction did not include the marker umc103 (our
number 16), which, in sorghum, may be orthologous to an
occurrence on chromosome 8 of maize rather than the one on
chromosome 3.

In addition, our construction of the sorghum DAG reflects
the resolution of a conflict between the two datasets involving
umc5 (our marker 5) versus rz244 and cdo 920 (markers 4
and 24). The same marker is also in conflict with rz995
(marker 6) in the maize databases and this uncertainty has
been incorporated into the maize DAG.

The DAG edges for maize and sorghum combined with
the edges representing all unordered pairs of markers (11 for
maize and 31 for sorghum) to form DGs were combined to
make a bicoloured graph for rearrangement analysis.

The efficient algorithms for genome comparison, starting
with the Hannenhalli–Pevzner algorithm, require the orient-
ation, or strandedness, of the genes or markers, and not only
their order. More specifically, the information required is
which markers are on different strands on the two genomes and
which have not changed strand from one genome to the other.
The experimental work underlying traditional genetic maps,
such as those we have used here, generally cannot specify
strandedness, so the usual solution in computational genomics
is to assign polarity so as to minimize the rearrangement cost,

Table 1. (Vertical) Orders of markers appearing in at least one maize dataset
and one sorghum dataset, numbered according to the ‘IBM2 neighbors 2003’
dataset

IBM2 IBM Paterson Klein

umc121 1
rz543 2 1
csu621 3 2 16
rz244 4 2 2
umc10 5 3
rz995 6 (6,4) 6
cdo1160 7 5 1
sps2 8 7 (23,4) 5
csu776 9 8 4
rz444 9 (5,24) 23
csu351 (10,11) 22
csu690 12 (10,11) (22,21) 7
bcd738 13 12 20 18
bnl15.20 14 19 17
csu706 15 (14,13) 7 14
umc103 15 15 13
umc17 (16,17,18) 17 12
bcd828 11
csu744 (19,20) 10
csu456 (19,20) 9
csu397 (21,22) 8
umc63 (21,22) 23
cdo920 23 24
lhcb1 24

Parentheses group markers mapped to the identical chromosomal position. Horizontal
alignment of markers in different datasets is arbitrary and has no significance.

cf. http://www.cse.ucsd.edu/groups/bioinformatics/GRIMM/
and Tesler (2002a).

In our example, this turns out to require a negative polarity
on sorghum markers 4–6, and 8–24.

Applying the find_cycle_decomp algorithm gives a
19-cycle decomposition, implying five (23 markers+1 − 19
cycles= 5) reversals are necessary to transform a lineariza-
tion of the sorghum chromosome into a linearization of the
maize chromosome. The two linearizations in the output are
for maize and sorghum, respectively:

where the negative polarity items in sorghum are underlined.
Five reversals that convert the sorghum order into the maize
order are indicated by boldface in the following sequence:

i506

 at U
niversity of O

ttaw
a on M

arch 15, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://www
http://www.maizegdb.org/ancillary/IBMneighbors.html
http://www.cse.ucsd.edu/groups/bioinformatics/GRIMM/
http://bioinformatics.oxfordjournals.org/


“bti1037” — 2005/6/10 — page 507 — #6

Reversal distance for partially ordered genomes

Fig. 5. DAGS constructed from by combining the partial orders of
two maize datasets and two sorghum datases presented in Table 1.

Note that two of these reversals are necessary only to account
for the apparent movement of marker 7 in the chromosome.

Our analysis has, thus, taken the rather incomplete data in
the two datasets for each chromosome, as represented in the
DAG, providing a plausible linear order for all the markers in
both genomes, while simultaneously inferring the most eco-
nomical sequence of evolutionary rearrangements to account
for the gene order differences.

7 CONCLUSIONS
In this paper we have proposed a more realistic version of the
genome comparison problem, where the gene order or marker
order in the two genomes is incompletely specified. This is
not a special case, but the general case for genomic maps of
all higher organisms.

When diverse maps of the same genome are combined to
produce a more detailed map, the main sources of uncer-
tainty in the order are generally not the conflicts between
the original maps, but simply the different gene or marker
content of the original maps and the lack of resolution
in them.

We have shown that the appropriate way to combine maps
of this sort, so as to retain all the order information in each,

and without imposing any additional structure, is through the
DAG representation.

We locate the problem of inferring rearrangements
for two genomes in DAG form in the selection of
edges in the generalized Hannenhalli–Pevzner bicoloured
graph defined by these DAGs, so as to obtain a
maximal decomposition of the vertices into alternating
cycles.

To find the most economical rearrangement scenario, which
is the solution to this problem, our algorithm simultaneously
finds the optimal topological sorting of both genome DAGs
into totally ordered form. This is a rigorous way of using
comparative data to help order the genes or markers on
a chromosome.

We have implemented our algorithm so that it works for
small but non-trivial data, exemplified by a chromosomal
comparison between maize and sorghum. However, there are
many ways to improve the efficiency of this method so that it
will work with much largern. This is the current priority for
work on this project.

At the same time, we are incorporating the full Hannenhalli–
Pevzner equation to minimize the number of reversals, rather
than just maximizing the number of cycles.

We have extended our analysis (Zheng and Sankoff, 2005)
to handle translocations and reversals as in Hannenhalli and
Pevzner (1995) and Tesler (2002b). There is little conceptual
difference in formulating our problem for the reversals only
case and for the reversals and translocations case.

In further research (Sankoffet al., 2005), it will be necessary
to implement a method to automatically assign polarity. Our
method is most appropriate for genomes with relatively little
genomic sequencing, and most frequently with maps that do
not specify strandedness.

We point out that in both the reversals context and the trans-
locations plus reversals context, once a method for optimizing
the cycle decomposition is perfected, there is no additional
work required to find a way to identify the actual rearrange-
ments. Since finding the cycles also gives us linearizations,
these linear genomes can be used in existing methods, such
as the GRIMM server (Tesler, 2002a).

ACKNOWLEDGEMENTS
Research supported in part by grants from the Natural
Sciences and Engineering Research Council of Canada
(NSERC). D.S. holds the Canada Research Chair in Mathem-
atical Genomics and is a Fellow of the Evolutionary Biology
Program of the Canadian Institute for Advanced Research.

REFERENCES
Bowers,J.E., Abbey,C., Anderson,S., Chang,C., Draye,X.,

Hoppe,A.H., Jessup,R., Lemke,C., Lennington,J., Li,Z.et al.
(2003) A high-density genetic recombination map of sequence
tagged sites for sorghum, as a framework for comparative

i507

 at U
niversity of O

ttaw
a on M

arch 15, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


“bti1037” — 2005/6/10 — page 508 — #7

C.Zheng et al.

structural and evolutionary genomics of tropical grains and
grasses.Genetics, 165, 367–386.

Hannenhalli,S. and Pevzner,P.A. (1995) Transforming men into mice
(polynomial algorithm for genomic distance problem). InPro-
ceedings of the IEEE 36th Annual Symposium on Foundations
of Computer Science, Milwaukee, WI, pp. 581–592.

Hannenhalli,S. and Pevzner,P.A. (1999) Transforming cabbage into
turnip (polynomial algorithm for sorting signed permutations by
reversals).J. ACM, 48, 1–27.

Menz,M.A., Klein,R.R., Mullet,J.E., Obert,J.A., Unruh,N.C. and
Klein,P.E. (2002) A high-density genetic map of Sorghum bicolor
(L.) Moench based on 2926 AFLP, RFLP and SSR markers.Plant
Mol. Biol., 48, 483–499.

Polacco,M.L. and Coe,E., Jr (2002) IBM neighbors: a consensus
GeneticMap.

Sankoff,D., Zheng,C. and Lenert,A. (2005) Reversals of fortune.
Technical Report, Laboratory for Innovation in Bioinformatics,
University of Ottawa.

Tesler,G. (2002a) GRIMM: genome rearrangements web server.
Bioinformatics, 18, 492–493.

Tesler,G. (2002b). Efficient algorithms for multichromo-
somal genome rearrangements.J. Comput. Syst. Sci., 65,
587–609.

Ware,D., Jaiswal,P., Ni,J., Pan,X., Chang,K., Clark,K.,
Teytelman,L., Schmidt,S., Zhao,W., Cartinhour,S., McCouch,S.
and Stein,L. (2002) Gramene: a resource for comparative grass
genomics.Nucleic Acids Res., 30, 103–105.

Zheng,C. and Sankoff,D. (2005) Genome rearrangements with par-
tially ordered chromosomes. In Wang,L. (ed.)Lecture Notes in
Computer Science, COCOON 2005, Spring, in press.

i508

 at U
niversity of O

ttaw
a on M

arch 15, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/

