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ABSTRACT

Motivation: The total order of the genes or markers on a
chromosome inherent in its representation as a signed per-
mutation must often be weakened to a partial order in the
case of real data. This is due to lack of resolution (where sev-
eral genes are mapped to the same chromosomal position)
to missing data from some of the datasets used to compile a
gene order, and to conflicts between these datasets. The avail-
able genome rearrangement algorithms, however, require total
orders as input. A more general approach is needed to handle
rearrangements of gene partial orders.

Results: We formalize the uncertainty in gene order data by
representing a chromosome from each genome as a partial
order, summarized by a directed acyclic graph (DAG). The
rearrangement problem is then to infer a minimal sequence
of reversals for transforming any topological sort of one DAG
to any one of the other DAG. Each topological sort repres-
ents a possible linearization compatible with all the datasets
on the chromosome. The set of all possible topological sorts is
embedded in each DAG by appropriately augmenting the edge
set, so thatitbecomes a general directed graph (DG). The DGs
representing chromosomes of two genomes are combined to
produce a bicoloured graph from which we extract a max-
imal decomposition into alternating coloured cycles, and from
which, in turn, an optimal sequence of reversals can usually
be identified. We test this approach on simulated incomplete
comparative maps and on cereal chromosomal maps drawn
from the Gramene browser.

Contact: sankoff@uottawa.ca

1 INTRODUCTION

The total order of a chromosome inherent in its represent-
ation as a permutation or string must often be weakened in
the case of realistic data, where mapping information only
suffices to partially order the set of genes on a chromo-
some. Unfortunately, the concepts and methods of genome
rearrangement pertain only to totally ordered sets of genes,
markers or segments, and are meaningless in the context of
partial orders.

Here we extend genome rearrangement theory to the more
general context where both gene orders are represented by
directed acyclic graphs (DAGSs) rather than linear strings. The
use of DAGs reflects uncertainty of the gene order on chromo-
somes in the genomes of most advanced organisms. This may
be due to lack of resolution (where several genes are mapped
to the same chromosomal position) to missing data from some
of the datasets used to compile a gene order and/or to conflicts
between these datasets.

We construct the DAGs for each species from two or more
partially incompatible databases, or a single low-resolution
dataset. The lack of order information in each dataset, due to
missing genes or missing order information, is converted into
parallel subpaths within the DAG in a straightforward manner.

Outright conflicts of order create cycles that must be broken.
We suggest a number of reasonable alternative conventions
for breaking cycles. This is not the focus of our analysis,
however; whatever convention is adopted does not affect our
subsequent analysis.

The genome rearrangement problem thertoignfer a
sequence of reversals which transform a linearization (topo-
logical sort) of the DAG for one genome to a linearization
of the DAG for the other genome, minimizing the number of
reversals required. Each topological sort represents one of

Structural rearrangement within a chromosome can be,o hossible linearizations of all the partial information in
modeled by the transformation of one signed permutation Yl the datasets on a genome. We embed the set of all
another by means of reversals (inversions). Analyses that Cor?)bssible topological sorts in each DAG by appropriately aug-

pare gene orders, such as the Hannenhalli-Pevzner algorith;il?enting the edge set, so that it becomes a general directed
(1999), infer the smallest number of reversals to transforr’rbraph (DG)

one order to another, i.e. to transform an arbitrary string con- We then combine the edges of the two DGs, represent-

taining either one positive or negative occurrence of eacrilng two genomes, to produce a single large bicoloured graph
of {1,2,...,n} fto the refgrence order 1,2, ,n, Wher.e the . from which we extract a maximal decomposition into altern-
allowe_d operatlons_c0n5|st of revers_als ofany su_bstrmg (Wh'l%ting coloured cycles, so that a Hannenhalli-Pevzner type of
changing the polarity of each term in the substring). procedure can then generate an optimal sequence of rearrange-
ments. We focus here on obtaining the cycle decomposition;
this is equivalent to optimally linearizing the partial orders, so
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that finding the actual rearrangements can be done usingthig b ¢d e fghij klmn o Genome
previously available algorithms.
We test our method on simulated incomplete comparat

ive maps and on homologous maize and sorghum chromd(ab) d g(h,i,j) (ILm) o Database 1
somal maps.

a—d—g—h——I—o0 DAG
b/ \i m”
2 GENE ORDER DATA /

Maps of genes or other markers produced by recombinatio
analysis, physical imaging and other methods—no matte

how highly resolved—inevitably are missing some (andusuiy ¢ d e f kl(m,n) o Database 2
ally most) genes or markers and fail to order, or incorrectly

order, some pairs of neighboring genes with respect to eaq0— C-d—€-f k'lim_o DAG

other. Even at the ultimate level of resolution, that of genome n

sequences, the application of different gene-finding protocol
often gives maps that differ at the level of gene content.
Moreover, experimental methodologies and statistical map

a d g-h
ping procedures inevitably give rise to some small proportior] \ i/
of errors: two neighbouring genes incorrectly ordered, a gen / )
b-c ]
e—f—Kk
a

I—m-0 Combined
\n/ DAG

mapped to the wrong chromosome, a gene incorrectly name
or annotated. However it is not these errors we focus on in thi
paper, butthe more widespread issues of lack of resolution a
genes missing from a map. These should not be considered ) o

Fig. 1. Construction of DAGs from individual databases each con-

errors; they are normal and inherent in all ways of construct; > o . o
taining partial information on genome, due to missing genes and

ingaman, excelptfor.fhlgh_ly pollshedr?_enorr?e .;equencmg W'ﬂr%issing order information, followed by construction of combined
accyrate gene |d<_ant| ication (something that has not yet begqa g representing all known information on the genome. All edges
achieved in the higher eukaryotes, even for humans). directed from left to right.

A linear map that has several genes or markers at the same
position p, because their order has not been resolved, can

be considered a partial order, where all the genes beforgnother is to delete a minimal set of order relations so that
p are ordered before all the genes;atand all the genes | conflicts can be resolved. Still another is to ignore a min-
at p are ordered before all the genes followipg but the  jmym set of genes that will accomplish the same end. Any of
genes ap are not ordered amongst themselves. We call thighese approaches, or others, which we denote by the generic

procedurenake_po. _ routine name esolve, will produce results appropriate for our
For many genomes, there exist two or more gene mapgypsequent analysis.

constructed from different kinds of data or using different
methodologies. There is only one meaningful way of com-

bining the order information on two (partially ordered) maps3 THE DG EMBEDDING OF TOPOLOGICAL
of the same genome containing somewhat different subsets goORTS

of genes, as Ipng as there are no conflicting ordgr relationi DAG can generally be linearized in many different ways, all
(a » b,b < ajin the two, F‘ame!y by taking the union .Of the. derivable from a topological sorting routine. All the possible
partial orders, and extending this set through transitivity. Th|sa diacencies in these linear sorts can be represented by the
procedure i€ombine_po.

All the compatible partial order data on a genome can beedges of a DG containing all the edges of the DAG plus two

: e . ! ?dges of opposite directions between all pairs of vertices, that
represented in a minimal DAG whose vertex setis the union o L -

. S are not ordered by the DAG. This is illustrated in Figure 2.
all gene sets in the contributing gene maps, and whose edg e routine for constructing this araphdsger
correspond to just those order relations that cannot be derive 9 graphagger.
from other order relations by transitivity. The outcome of this
constructiondagger, is illustrated in Figure 1. 4 THE ALGORITHM

On the other hand, if different maps of the same genome

conflict, there are a variety of possible ways of resolving the-1 Background
conflict or, equivalently, of breaking any potential cycles in Before discussing our algorithm for comparing DGs derived
the construction of the DAG. One way is to delete all orderfrom our DAG representations, we review the existing tech-
relations that conflict with at least one other order relation.nology for the special case when the DAG and the associated
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—a b

I-m-0  Combined g
N,/

DAG = £ d—

a—d g-h
/ \17
b-c j
e—f—k Fig. 3. If abandcd are DAG edges, then the two non-DAG eddas

andbc are mutually exclusive, since together they lead to the wrong
order fora andb.

(3} {ghiijt {m; {{h}> though an eventual full-scale program will incorporate them
T V'r T 'lr 1‘ ,L <{{i}’> with no difficulty.
{0y

{b,c} {efk}  {n} 4.2 Generalization to partial orders

The routinemake_bicoloured can also be applied to the set

of edges in the DGs for the two genomes. In the resulting
Fig. 2. Edges added to DAG to obtain DG containing all lineariza- 9raph, each of the DAG edges and both of the edges connect-
tions as paths (though not all paths in the DG are linearizations ofg each of the unordered pairs in the DG represent potential
the DAG!). Each arrow represents a set of directed edges, one fro@djacencies in our eventual linearization of a genome.nlhe
each element in one set to each element of the other set. genes or markers determine 2 2 vertices and the potential
adjacencies determine the red and black edges, based on the
polarity of the genes or markers. Where the construction for
the totally ordered genomes contains exagth 1 edges of
Fach colour, in our construction in the presence of uncertainty
there are more than2+ 1) potential edges, but only2+ 1)

can be chosen in our construction of the cycle graph, which
is equivalent to the simultaneous linearization by topological

DG represent a total order, which is the traditional subject o
computational comparative genomics.

The Hannenhalli-Pevzner construction of a shortes
sequence of reversals for transforming one gendtneof
length n, into anotherB begins by combining the signed
permutation representations of the two genomes. The fol= =
lowing proceduremake bicoloured produces a bicoloured sorting of each genome.

graph on 2 + 2 vertices that decomposes uniquely into a setm;tk'SttE'S proglemgifsel ?ft' ngc;[he rlght_ztctjbset Ogjsdr?%(;hat
of alternating-coloured cycles. Each gene or matkagterm- es the prablem difficult (and, we conjecture, NP-hard).

ines two verticesxt andxh, to which two additional vertices The choice of certain edges generally excludes the choice
s and f (for start émd finis,h) are added. One colour edge saﬁ: certain other ones. This is not just a question of avoiding
red, is determined by the adjacencie®inf x is the Ieft-han(;l ultiple edges of th.e same.colou.r atavertex. There are more
neighbour ofy in R, and both have positive polarity, theh ﬁﬁjt;il;f;;mc;?g%?zlguIarly involving the non-DAG edges, as
is connected by a red edgeyb If they both have negative . . .

polarity, it is xt that is joined toyh. If x is positive andy Our approach to this problem is a depth-first branch-and-

negative, orx is negative and positive, xh is joined toyh, boutr)d sclalarchgn?_gycle_tq?con;p, mf the en;]nronment otl'h
or xt is joined toyt, respectively. Ifx is the first gene, then continually updated partial orders lor €ach genome. €

s is joined toxt or xh depending on whether has positive st:angE( IS Itlo l:c)iwld c;yc;lr]es ggefat atlrr;]e. ‘elidible’
or negative polarity, respectively. ifis the last gene, theji 3' 'T} yat_ edges |r‘1 € q S\r/eacb_?erjlomﬁ are eligit .E;.
is joined toxt or xh depending on whether has negative or and afl vertices are _unused. We arbitrarily cnoose an initi-
positive polarity. ating vertexu in the bicoloured graph as well as an edge

Black edges are added according to the same rules bas. ident to it leading to another vertexAll remaining edges
on the adjacencies in genonpe ' of the same colour, incident to eitheror v, immediately

It can be seen that each vertex is incident to exactly on ecome ineligible. For certain choicessfdetailed below),

red edge and one black edge and that the bicoloured graﬁ e partial _order must be updated through th_e add_ition of the
decomposes uniquely into a number of alternating cycles. | rder relation represented byplus all others involving one

the number of cycles is, then the number of reversats vertex ordered befqre and one ordered after -
necessary to conveR into B is given by the Hannenhalli- At each successive stage of the search we add an eligible
Pevzner equation: edgee that does not conflict with the current partial order,

incident to the most recently included vertexto extend
r=n+l—c+h+f (1)  the current cycle or path to some as yet unused vertex
preferably, to complete a cycle.
whereh and f are corrections (for ‘hurdles and fortresses’), When an edge is added, the partial order for the genosome
which are usually zero for simulated or empirical data. Forcontaininge is updated, if necessary, including whenewés
simplicity of exposition, we will ignore these corrections here,not a DAG edge. It is in the DAG, no update is necessary

i504

TTOZ ‘ST Yose\ uo emeno o Ausiaaiun 1e 610°sjeunolpiofxo:solrewojuIolq WoJj papeojumod


http://bioinformatics.oxfordjournals.org/

Reversal distance for partially ordered genomes

(since the initial partial orders for the branch and bound ar¢
determined by the DAGS), unlessor v is incident to more
than one eligible edge of the same coloue am which case

Input: One or more incomplete maps for each of 2 genome
Remove: Markers missing from all maps for either genome
For each map,

[

additional order is imposed by the choicesofAll remaining make_po
edges of the same colour incidentitor v are made ineligible For each genome,
andu is now ‘used’. (resol_ve)
When a cycle is completed, the initiating vertex also combine_po
becomes ‘used’. Any unused vertex can then be chosen {o ggggrer

initiate a new cycle.

The search is bounded by using the fact that a cycle has
least two edges, and that a complete solution, representir]
some linearization, optimal or not, always has 2 edges.
Suppose the current best solution hasycles. Suppose, fur-
ther, the construction now underway is at a point where there
arec’ Cyc'eS, and this has usededges_ This means there are Flg 4. Summal’y of steps in simultansous linearization and reversal
only 2142 —m edges left to choose from. Then the final num- infer_ence. Steps in_ parenthe;esfsee Sections 2 an_d 6—not required
ber of cycles when the current construction is terminated wilf°" SI9n€d maps with no outright intra-genome conflicts.
benomorethat + (2n+2—m)/2 =c'+n+1—m/2. Sof

i,[(Add signs to markers)
make_bicoloured
gfind_cycl e _decomp
Output: Optimal cycles and linearizations

depth of our search tree remai@gn). The costs at each step
are dominated by the necessity of checking and updating a
partial order matrix of siz& (n?).

this branch of the search is abandoned and backtrack-
ing begins. 5 SIMULATED DATA

Backtracking is also invoked if no cycles can be made ugn Section 6 we will apply our algorithm to real genomes.
of the unused vertices. During backtracking, when an edge iglere, we simulate DAGs representing varying levels of uncer-
removed, so are the extra partial order relations it induced, aginty, modeling lack of resolution of gene order, and missing
well as any ‘eligible’ and ‘unused’ status it annulled in edgesgenes in two datasets.
and vertices, respectively. For a totally ordered genome containimgenes, we simu-

An initial value of c* can be found using any lineariz- |atem datasets based on two paramejessidg, representing
ations of the two DAGs or simply by running the depth- the probability that any two adjacent genes are not resolved
first algorithm until a first complete decomposition of the in a data set (i.e. are mapped to the same position) and the
bicoloured graph is found. probability that any particular gene is deleted (i.e. does not

We have implemented and tested our algorithm for modershow up on the map), respectively.
ately sized examples as a proof of principle for the synergy of |n any particular dataset, the genes that are not deleted are
linearization and reversal inference. We note that, aside fromdrdered as in the underlying genome, exceptwhen two or more
computing the time reduction due to the application of thegenes are mapped to the same position. These are considered
bound in Equation (2), as the search proceeds deeper into th€ have no order among them.
search tree, large numbers of competing edges are excludedThe second genome is derived from the first by a series of
each time an edge is selected, both because vertices are betagdom reversals. Then datasets are constructed as for the
used up and because of conflicts involving non-DAG edgesgriginal genome.
such as that in Figure 3. The information contained in alt datasets for each genome

is then fed into the analysis of the previous section.

4.3 Summary of the analysis We carried out simulations with= 12 and- = 3 reversals.
Figure 4 summarizes the steps in our analysis, starting froriVe testegp = 1/3andp = 2/3 and the same two values fpr
several sets of incomplete maps for each of two genomedVe also triedn = 2 andm = 4. The goal was to see how
and outputting two totally ordered maps related by a minimamuch uncertainty could be introduced into the system without
reversal scenario. losing the ability to infer the 3 reversals.

o In five runs with each combination gf, ¢ andm, the pro-
4.4 Complexity issues gram recovered 3 reversals in a majority of runs, except where
The major time and space costs of our method are of course dibth p andg are 2/3. Both forn = 2 andm = 4, enough
to the branch and bound procedurefiind_cycle_decomp. uncertainty was introduced so that linearizations compatible
The number of potential edges to be considered for inclusiowith only 2 or 1 reversals were generated.
in the decomposition can grow @(n202), wheres is the Thus, except with very high rates of missing and superim-
maximum number of parallel paths through the DAGs, but theposed genes, enough information is retained in the incomplete

d+n+1-m/2 <c*, ¥a)
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maps that our method can usually recover the correct reversasblel. (Vertical) Orders of markers appearing in at least one maize dataset

history intervening between the two genomes. and one sorghum dataset, numbered according to the ‘IBM2 neighbors 2003’
dataset
6 APPLICATION TO CEREAL GENOMES IBM2 IBM Paterson Klein

To illustrate the application of our method to real data,

we choose an example that is non-trivial but that is smalkmcl21 1
enough to verify visually. The Gramene database, http://wwvv’.zs‘:f21 23 12 16
gramene.org/, contains a variety of maps of the rice, maize(r:zszu a4 4 5 5
oats and other cereal genomes. We examined two dataseiscio 5 3
each for the relatively closely related corn and sorghum genrz995 6 (6,4) 6
omes: the ‘IBM neighbors’ and the ‘IBM2 neighbors 2003’ cdo1160 7 5 1
maps for chromosome 3 of maize (Polacco and Coe, 2002,"5376 g ; (23.4) f
http://www.maizegdb.org/anc?llary/lBMneighbors.htmI) and ;:;:44 9 (5.24) 23
the ‘Paterson 2003’ and ‘Klein 2004’ (Bowees al., 2003;  ¢su3s1 (10,11) 29
Menzet al., 2002) maps of the chromosome labeled A andcsu690 12 (10,11) (22,21) 7
LG-03, respectively, of sorghum. (We chose the two versiongcd738 13 12 20 18
of ‘IBM neighbors’ for illustrative purposes, to obtain a large °"'15-20 14 19 17
. csu706 15 (14,13) 7 14
enough sgt_of ma(kers _homolog_ous with sorghum markers,.-103 15 15 13
and containing typical kinds of differences between datasetgmc17 (16,17,18) 17 12
forasingle genome, despite their being drawn from successiveds28 11
updates of the same database.) csu744 (19,20) 10
We extracted all markers indicated as having a maize<s4456 (19,20) 9
L . csu397 (21,22) 8
sorghum homolpgous pairinvolving atleastone of the datasetg, .65 21,22) 23
from each species. ¢d0920 23 24
The 24 markers, their ‘IBM2 neighbors 2003’ hames andincb1 24

their orders in the four databases are listed in Table 1.

The two DAGs constructed from the maize sets and thé&arentheses group markers mapped to the identical chromosomal position. Horizontal
soghum sets by the routinmbineJoo and dagger are alignment of markers in different datasets is arbitrary and has no significance.
depicted in Figure 5. o .

Our construction did not include the marker umc103 (ourCf- http://www.cse.ucsd.edu/groups/bioinformatics/GRIMM/
number 16), which, in sorghum, may be orthologous to arnd Tesler (2002a).
occurrence on chromosome 8 of maize rather than the one on!n OUr example, this turns out to require a negative polarity
chromosome 3. on sorghum markers 4—6, and 8-24.

In addition, our construction of the sorghum DAG reflects APPIYing the find_cycle_decomp algorithm gives a
the resolution of a conflict between the two datasets involvingt9-cycle decomposition, implying five (23 markerg — 19
umc5 (our marker 5) versus rz244 and cdo 920 (markers gycles: 5) reversals are necessary to tra_nsfor_m a lineariza-
and 24). The same marker is also in conflict with rzogstion of the sorghum chromosome into a linearization of the
(marker 6) in the maize databases and this uncertainty h4gaize _chromosome. The two Iin_earizations in the output are
been incorporated into the maize DAG. for maize and sorghum, respectively:

The DAG edges for maize and sorghum combined with
the edges representing all unordered pairs of markers (11 fl234
maize and 31 for sorghum) to form DGs were combined td 2364
make a bicoloured graph for rearrangement analysis.

The efficient algorithms for genome comparison, startingwvhere the negative polarity items in sorghum are underlined.
with the Hannenhalli-Pevzner algorithm, require the orientFive reversals that convert the sorghum order into the maize
ation, or strandedness, of the genes or markers, and not onfyder are indicated by boldface in the following sequence:
their order. More specifically, the information required is

578910111213 1415171819202122 2324

65
4232452221201971817151413 12111098

L

ka2

which markers are on different strands onthe twogenomesarl 2364232432321 20 197181715 41312111098
which have not changed strand from one genome to the othel 23 4623245222120107 18 1715141312111098

b L

16524232221201971817 151413 12111098
1658910111213141517187 192021222324
1657181715141312111998192021222324
1657891011 1213141517 18192021222324

The experimental work underlying traditional genetic maps! 2
such as those we have used here, generally cannot specl 2
strandedness, so the usual solution in computational genomil 2
is to assign polarity so as to minimize the rearrangement cosl 2

lad o L
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1
Maize 5 5 Sorghum
! ;
i ‘
A N
5 6 4>{.‘S
NS }
7 23
| {
8 24
é 2{ 22
10/}1 L
NS 2?
12 19
| {
13 7
1'5 14\5
8 1
7 Ts -
17 12
1[9)(2!0 }
14 11
2'1x2'2 o
13 10
N~/ }
23 9
| |
24 8

Fig. 5. DAGS constructed from by combining the partial orders of

two maize datasets and two sorghum datases presented in Table £

and without imposing any additional structure, is through the
DAG representation.

We locate the problem of inferring rearrangements
for two genomes in DAG form in the selection of
edges in the generalized Hannenhalli-Pevzner bicoloured
graph defined by these DAGs, so as to obtain a
maximal decomposition of the vertices into alternating
cycles.

To find the most economical rearrangement scenario, which
is the solution to this problem, our algorithm simultaneously
finds the optimal topological sorting of both genome DAGs
into totally ordered form. This is a rigorous way of using
comparative data to help order the genes or markers on
a chromosome.

We have implemented our algorithm so that it works for
small but non-trivial data, exemplified by a chromosomal
comparison between maize and sorghum. However, there are
many ways to improve the efficiency of this method so that it
will work with much largern. This is the current priority for
work on this project.

Atthe same time, we are incorporating the full Hannenhalli—
Pevzner equation to minimize the number of reversals, rather
than just maximizing the number of cycles.

We have extended our analysis (Zheng and Sankoff, 2005)
to handle translocations and reversals as in Hannenhalli and
Pevzner (1995) and Tesler (2002b). There is little conceptual
difference in formulating our problem for the reversals only

ase and for the reversals and translocations case.

" Infurther research (Sankadfal ., 2005), it will be necessary
to implement a method to automatically assign polarity. Our

Note that two of these reversals are necessary only to aCCOURfathod is most appropriate for genomes with relatively little

for the apparent movement of marker 7 in the chromosome.

genomic sequencing, and most frequently with maps that do

Our analysis has, thus, taken the rather incomplete data if; specify strandedness.
the two datasets for each chromosome, as represented in th§ue noint out that in both the reversals context and the trans-

DAG, providing a plausible linear order for all the markers in
both genomes, while simultaneously inferring the most eco
nomical sequence of evolutionary rearrangements to accou
for the gene order differences.

7 CONCLUSIONS
In this paper we have proposed a more realistic version of th

locations plus reversals context, once a method for optimizing
the cycle decomposition is perfected, there is no additional
Work required to find a way to identify the actual rearrange-
ments. Since finding the cycles also gives us linearizations,
these linear genomes can be used in existing methods, such
as the GRIMM server (Tesler, 2002a).
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