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Abstract. There has been a trend in increasing phylogenetic coverage
for genome sequencing while decreasing the sequencing coverage for each
genome. With lower coverage, there is an increasing number of genomes
being published in contig form. Rearrangement algorithms, including
gene order-based phylogenetic tools, require whole genome data on gene
order, segment order, or some other marker order. Items whose chromo-
somal location is unknown cannot be part of the input. The question we
address here is, for gene order-based phylogenetic analysis, how can we
use rearrangement algorithms to handle genomes available in contig form
only? Our suggestion is to use the contigs directly in the rearrangement
algorithms as if they were chromosomes, while making a number of cor-
rections, e.g., we correct for the number of extra fusion/fission operations
required to make contigs comparable to full assemblies. We model the
relationship between contig number and genomic distance, and estimate
the parameters of this model using insect genome data. With this model,
we can then reconstruct the phylogeny based on genomic distance and
numbers of contigs.

1 Introduction

While the increasing pace of genome sequencing is adding phylogenetic breadth to
the inventory of species available for comparative genomics, the sequencing cov-
erage of many of these species is not sufficient to produce completely assembled
genomes. Instead the published and archived data remain in contig form, not nec-
essarily associated with chromosomal scaffolds, and there are often no resources
allocated to further polishing. The price paid for increasing phylogenetic cover-
age in genome sequencing is thus the decreasing the sequencing coverage for each
genome. With lower coverage, more genomes are being published in contig form.

While such data may be adequate for many types of comparative genomic
studies, they are not directly usable as input to genome rearrangement algo-
rithms. These algorithms require whole genome data, i.e., complete represen-
tations of each chromosome in terms of gene order, conserved segment order,
or some other marker order, in order to calculate the rearrangement distance d
between two genomes. Items whose chromosomal location is unknown cannot be
part of the input.

The present paper deals with gene order-based phylogeny. The question we
ask here: Is there any way to use genome rearrangement algorithms to compare
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genomes available in contig form only? One elegant answer was provided by Gaul
and Blanchette [7] for the comparison of two genomes. Their method constructs
a number of intermediate structures before actually comparing the genomes.
Since we will be using distance matrix methods for phylogenetic analysis, the
Gaul and Blanchette procedure is largely irrelevant; we need distances and not
the detailed reconstruction of the structures used in calculating the distance. For
these purposes, involving more than two genomes, our suggestion is to use the
contigs directly in the rearrangement algorithms as if they were chromosomes.
This introduces a number of biases, such as increasing the distance to accommo-
date the count of extra fusion/fission operations necessary to compare genomes
with different numbers of chromosomes. This bias and other problems with re-
arrangement distances in general and with contig-based distances in particular
must be corrected during the construction of a distance matrix to input into a
phylogenetic analysis.

We apply our methods to data originating mostly in the 12-genome Drosophila
project [5]. We compare ten Drosophila genomes with two other dipteran genomes
and two outlier insect genomes. We discuss this data in Section 2.

In Section 3, we model the behaviour of the genomic distance as a function
of evolutionary time, and discuss how to invert this function in order to infer
elapsed time. In Section 4 we study the case where one of the two genomes
being compared is fully assembled and the other is in contig form. Simulations
are used to understand the consequences on evolutionary time inference of using
incomplete assemblies. The ideas developed there are then extended to the more
complex case where both genomes are fragmented into contigs, in Section 5. We
can then construct a matrix of corrected evolutionary divergence times between
all pairs of genomes in the database and carry out a phylogenetic analysis of
the fourteen genomes, in Section 6. Finally, in the Conclusion, we suggest a
simplifying hypothesis for further mathematical and empirical work on the contig
problem.

2 The Data

One of the difficulties in using gene order rearrangement algorithms is the lack of
curated gene order databases for the higher eukaryotes with sequenced genomes.
Because the gene identification and homology identification has already been
done Ref [5], we use a carefully constructed inventory of neighbouring gene pairs
(NGP) in ten Drosophila species and four outgroup insects, rather than raw con-
tig data. A.J. Bhuktar provided us with a file listing all NGPs and the genomes
in which they appear. By the time of writing, the assembly of these genomes has
progressed, but for our purposes, i.e., to show how to handle genomes in contig
form, the original data set is preferred.

We abstracted best-judgement divergence times among the genomes from a
number of somewhat contradictory recent publications [8,10,11], as summarized
in Figure 1.

Bhutkar et al. [2,3] have already used the NGP data for a phylogenetic analysis
of Drosophila, inferring phylogenies, rearrangements and synteny blocks, but our
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Fig. 1. Phylogeny of Drosophila and outgroups abstracted from the literature, with
divergence times

Table 1. Number of contigs constructed for each genome

species (abbreviation) genes contigs species (abbreviation) genes contigs

D. melanogaster (Dmel) 8867 6 D. sechellia (Dsec) 8851 66
D. yakuba (Dyak) 8809 30 D. erecta (Dere) 8866 9
D. ananassae (Dana) 8844 40 D. pseudoobscura (Dpse) 8778 51
D. persimilis (Dper) 8779 87 D. virilis (Dvir) 8855 32
D. mojavensis (Dmoja) 8853 14 D. grimshawi (Dgri) 8801 35
Anopheles gambiae (Anoph) 6168 6 Aedes aegypti (Aedes) 6318 869
Apis mellifera (Apis) 4898 702 Tribolium castaneum (Trib) 5647 89

use of the NGP here is different. It is simply to reconstruct the gene orders in the
contigs; we wish to create a data set for testing our method for gene order-based
phylogenetics from genomes in contig form.

For each genome, we constructed contigs by amalgamating overlapping NGPs.
Whenever we arrived at a gene in only one NGP in a genome, this terminated
a contig. Our reconstruction then does not necessarily correspond completely to
the original contigs in the 12-genome Drosophila sequencing project [5], but this
has little importance for our work – how the genomes are fragmented into contigs,
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and into how many, is a methodological question that depends on laboratory
resources and techniques and has nothing directly to do with how the genome
has evolved. (Both contig ends and rearrangement breakpoints may be enriched
for duplicated sequence, but this indirect connection has no consequence for the
problem we are attacking).

Table 1 gives the number of contigs reconstructed for each genome. Note that
the reconstructions of D. melanogaster, D. erecta and An. gambiae reflect the
complete, or almost complete, assembly of these genomes.

3 Genomic Distance and Evolutionary Time

We assume familiarity with the classical genetics notions of inversion, transpo-
sition and reciprocal translocation of chromosome segments, as well as chromo-
somal fission and fusion. These are formalized in such papers as those by Tesler
[12], Yancopoulos et al. [14], and Bergeron et al. [1] Briefly, representing a chro-
mosome a a string of genes h1 · · ·hl, where a pair of successive genes huhu+1 are
termed an adjacency, we can illustrate:

• an inversion (implying change of sign, i.e., change of strand) of a chromoso-
mal segment:
h1 · · ·hu · · ·hv · · ·hm → h1 · · · − hv · · · − hu · · ·hm, disrupting the two adja-
cencies hu−1hu and hvhv+1,

• a transposition of a chromosomal segment:
h1 · · ·hu · · ·hv · · ·hw · · ·hm → h1 · · ·hu−1hv · · ·hwhu · · ·hv−1hw+1 · · ·hm,
disrupting the three adjacencies hu−1hu, hv−1hv and hwhw+1

• a reciprocal translocation between two chromosomes:
h1 · · ·hu · · ·hl, k1 · · · kv · · · km → h1 · · · kv · · · km, k1 · · ·hu · · ·hl, disrupting
the two adjacencies hu−1hu and kv−1kv,

• a chromosome fission:
h1 · · ·hv · · ·hl → h1 · · ·hv, hv+1 · · ·hl, disrupting the adjacency hvhv+1, and

• the fusion of two chromosomes:
h1 · · ·hl, k1 · · · km → h1 · · ·hlk1 · · · km.

The genomic distance is the minimum number of operations of these types (or
some specified subset of types) required to transform one of the genomes be-
ing compared into the other. The authors mentioned above also provide rapid
algorithms for deriving the distance, given genomes composed of ordered chromo-
somes represented by the same n genes, markers or segments in the two genomes,
assuming the strandedness, or reading direction, of each gene is known.

Even assuming that rearrangements occur at a relatively constant rate over
time and are randomly positioned in the genomes, we have no simple, exact
probability relationship between the actual number τ of rearrangements after
a certain time t has elapsed and the number of rearrangements d inferred by
applying the genomic distance algorithms to compare the initial and the derived
genomes [4,6,13]. We can, however, model the proportion of adjacencies that
will be disrupted versus the proportion that will remain intact after τ random
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rearrangements. For each of the adjacencies in the original genome, the prob-
ability that it will remain undisrupted after τ rearrangements is (1 − λ/n)τ or
approximately e−λτ/n, where λ depends on the proportions of the various kinds
of rearrangements in the model. Thus the number of disrupted adjacencies will
be approximately n(1 − e−λτ/n).

Now, we can expect at the τ -th step that the increase in d will also be closely
connected to the proportion of the adjacencies between genes that have not been
created, i.e., have never been disrupted, by the previous τ −1 rearrangements —
if the τ -th rearrangement only disrupts adjacencies created in previous steps, it
is quite likely that the inference algorithm will suggest an optimal evolutionary
history requiring no more rearrangements than were required after the τ − 1-st
step. Then, though we do not know the precise probability law of d, we can
hypothesize as a first approximation

E(d) ≈ n(1 − e−λτ/n), (1)

where n is the number of ordered genes or markers in both genomes, and λ in
this case is a constant close to 1, since we know that d ≈ τ for small τ and that
d/n → 1, as τ → ∞. Then if we knew λ, we could estimate τ using

τ̂ = −n

λ
log

(
1 − d

n

)
. (2)

In fact, the relationship between the actual and inferred numbers of rearrange-
ments (not shown) deviates considerably from the one-parameter model in Eq
1 both for small and large τ . Combinatorial effects result in E(d) < τ even for
very small values of τ . And the approach to the asymptote E(d)

n ↗ 1 is faster
than Eq 1 would suggest. We thus have recourse to a a two-parameter model
by adding a quadratic correction to the linear term in the exponent, so that the
model becomes

E(d) ≈ n(1 − e−λ1τ/n−λ2(τ/n)2), (3)

in which case the estimate of τ becomes

τ̂ =
n

2λ2

(
−λ1 +

√
λ2

1 − 4λ2 log
(

1 − d

n

))
(4)

This analysis resembles the “empirical” approach in Ref [13] to the relation-
ship between d and τ , which also makes use of two parameters, except that our
starting point is the intuitive development leading to Eq 1 at the beginning of
this section, whereas Ref [13] takes a purely curve-fitting approach from the
outset.

To estimate the parameters λ1 and λ2, we simulate pairs of genomes with
n = 8867, the maximum number of genes used in our Drosophila melanogaster
comparisons, and τ up to 9000 random rearrangements to derive one genome
from the other. We assume the rearrangements are almost exclusively inversions
(around 99.8%), reflecting the evolutionary history of Drosophila. We use a DCJ
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Fig. 2. Predicted (curve) and observed (dots) values of genomic distance d, and inferred
(open dots) values of τ̂ versus true (diagonal line) values

algorithm [14,1] to calculate d from the genomes. This is repeated 100 times,
and d averaged, to estimate E(d).

Figure 2 shows the relationship between τ and both E(d) and τ̂ , using the
values λ1 = 0.846 and λ2 = 0.576, found by a least sum of squares criterion
applied to the set of τ and τ̂ values. The way τ and d are normalized means that
the parameters should not be very sensitive to n, though we do not study this
here, since the experimental genomes are of comparable sizes.

4 The Effect of Genome Fragmentation

Consider one completely assembled genome B and another, A, in contig form
only. The basic idea is that if we treat each contig as a chromosome, a rearrange-
ment algorithm will automatically carry out a number of “fusions” to assemble
the χA contigs in A into a small number of inferred chromosomes equal to the
number χB in B, in calculating d. At the same time it will find other rearrange-
ments, but we know that the fusions can be separated out as an initial step
without changing the total number of rearrangements required. Furthermore,
we know exactly how many fusions are required, namely the difference between
the number of contigs in A and the number of chromosomes in B. (The optimal
scenario will never require both fusions and fissions.)
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Thus, when we use a rearrangement algorithm to compare a genome A in
contig form with an assembled genome B, obtaining a preliminary distance d′,
it may seem appropriate to correct this to

d = d′ − |χA − χB |. (5)

The absolute value signs accommodate the rare case where χA < χB. Since
the rearrangement distance can be achieved by doing all the translocations and
fusions first, before all the inversions, the correction |χA − χB| is a fixed value
and is not dependent on the details of the rearrangement scenario, for which
there may be many for a particular data set.

If this whole line of argument were universally valid, we could simply substi-
tute correction Eq 5 into Eq 2 or 4 to estimate τ . In reality, this correction is
only appropriate for small values of τ (e.g. τ < 0.1n). For larger values, the ap-
parent rearrangement distance d′ based on contigs is inflated less than |χA−χB|
over one based on the correctly assembled genomes. The fragmentation of the
genome into contigs allows the algorithm, in effect, to compare more similar,
albeit incorrect, assemblies. This effect was previously noted in Ref [9]. To cir-
cumvent it, we should only remove a proportion α of |χA − χB| from d′. How
large a proportion?

To answer this, we undertook a series of simulations, starting from an initial
genome B containing 8867 genes in χB = 6 chromosomes, generating 100 rear-
ranged genomes, each through τ random rearrangements applied to B to produce
a new genome, and each then fragmented into χA contigs. This was repeated for
a range of values of τ and χA.

The average results for d′ are summarized on the left of Figure 3. First the
linearity of the response to increasing χA is clear, at least in the range studied
χA < 1000, indicating that Eq 5 should be replaced by

d = d′ − α(τ)|χA − χB|, (6)

where α(τ) is a decreasing function of the number of rearrangements τ . This
decrease is not linear; for practical purposes, we can fit α(τ) with a quadratic
function. Also, as we already know from Eq 3 and Figure 2, d/τ is a decreasing
function of τ . This dependence of α and d/τ on τ , as derived from the simula-
tions, are shown on the right of Figure 3.

Given d′, then, we can solve Eqs 3 and 6 simultaneously to find τ and d, since
n, λ1, λ2, χA and χB are known, as is the dependence of α on τ . In practice,
this can be done by successive iteration of Eqs 4 and 6, which converges rapidly,
initializing with, for example, τ0 = d′.

Applying this to the comparison of the completely assembled D. melanogaster
genome with each of the other 13 genomes, and to the comparison of the com-
pletely assembled Anopheles gambiae genome with each of the other 13 genomes,
gives the results on the left of Figure 4. The high degree of scatter at higher di-
vergence times reflects both the uncertainty of the divergence dates and the
inhomogeneity of rearrangement rates both between the fruitfly and mosquito
families within the dipteran order and among the three orders in the class Insecta
represented in these data.
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5 The Case of Both Genomes in Contig Form

When we compare two incompletely assembled genomes A and B, we may still
wish to remove some quantity depending on χA and χB from d′ to account for the
fusions (and/or fissions), but this is not as easy to analyze, for two reasons. One
is that we are not comparing a fragmented genome to a complete genome, so we
can no longer consider this correction as a way of using the assembled genome
as a guide for reconstructing the fragmented genome, simultaneous with the
distance calculation. The second problem is that there is no obvious way, within
the formula, of combining (adding, multiplying, . . . ) the number of contigs in
one genome with the number in the other. This reflects the lack of intuition on
how the contigs increase the distance (because of artificial fusions and fissions)
on one hand, and how they decrease it (by multiplying the number of economical
but false rearrangements) on the other hand. These reasons lessen the intuitive
appeal of the kind of correction we used in the previous section. Nevertheless,
we can try to find an appropriate correction using the same simulation approach
as in the previous sections.

We simulated 50 runs each of two genomes of size n = 8867 separated by
τ = 1000, 3000, 6000 and 8000 random rearrangements as before, but with both
genomes independently and randomly fragmented into χ = 100, 200, 400, 600 or

800 contigs, i.e., 5 +
(

5
2

)
= 15 pairs of contig configurations for each degree of

rearrangement. We applied the DCJ algorithm and calculated the mean d′ for
each configuration. The results are summarized in Figure 5.

We observe on the left of Figure 5 that for fixed τ and χA, the response of
d′ to increasing χB is systematically linear. This is clear up to τ = 6000 and
only starts to break down for τ = 8000 and χA ≥ 600, where examination of the
data on an expanded scale shows that d′ actually decreases somewhat initially,
then increases, as χB increases (not discernible in Figure 5). The linear rate of
increase of d′, plotted as β(τ, χA) on the right of the figure, is the same as the
α(τ) in Figure 3 for low values of χA. In fact, d′ shows the same linear increase
as a function of χA + χB up to moderate values of this sum, as in Figure 3,
depending on τ , after which the rate of increase drops off somewhat.

As with the case of only one genome fragmented into contigs studied in Section
4, we can infer d and τ from observed values of d′ by solving Eq 4 simultaneously
with

d = d′ − α(τ)χA − β(τ, χA)χB, (7)

where β(τ, χA) = α(τ) − (.00027 − .00003τ)χA, and where the coefficient of χA

is estimated by a least squares fit to the slopes of the four trend lines in Figure
6 (right).

Plotting the inferred values of τ against values extracted from the literature
produced the results on the right of Figure 4.
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6 Phylogeny

If we input the inferred pairwise values of τ into a neighbour-joining routine,
we produce the phylogeny in Figure 7. When this is compared to Figure 1, the
only structural difference is at one node where we see D. sechellia branching off
just before D. melanogaster rather than branching off together as sister groups.
More striking is the long branch leading to the Drosophila group, suggesting a
rapid rate of evolution at the moment of divergence from other Diptera. Note
that using the uncorrected matrix of d′ as input to neighbour joining does not
show this rate effect as clearly as τ and also introduces other structural errors
into the phylogeny.

dyak
——|

——| dere
                                                           |  |

———| dmel
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Fig. 7. Neighbour-joining phylogeny based on matrix of inferred number of rearrange-
ments τ

7 Conclusion

We have developed a principled approach to correcting genome rearrangement
distance when comparing genomes in contig form. Features of this include:

– A model for the τ—d relationship motivated by intuitive connections be-
tween genomic distance and adjacency disruption.

– A reasoned procedure for subtracting artificial fusions and fissions due to
the fragmentation of one or both of the genomes into contigs.

– The discovery and quantitative characterization of the linear relation be-
tween the uncorrected distance and the number of contigs, when only one or
both of the genomes are fragmented into contigs. These linearities hold for
a wide range of τ , up to 6000 for genomes of size around n = 9000, and up
to χ = 1000 contigs.
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– Improved phylogenetic reconstruction for a data set on 14 insect genomes.
We recovered a tree that accurately reflects almost all the phylogenetic infor-
mation extracted from the literature, and pinpointed a period of evolutionary
acceleration on one lineage.

As argued in Section 3, the values of the parameters λ1 and λ2 are not likely to
be very sensitive to n, especially for n in the thousands, since the model relates
the normalized variables τ/n and d/n. Nor should they depend on details of the
rearrangement model such as the number of chromosomes or the proportions
of different types of rearrangement, assuming the latter are naturally weighted
as in the double-cut-and-join framework. This stability reassures us that our
methods should be widely applicable beyond the Drosophila data we have used,
but only partly mitigates the main shortcoming of this and other models such as
in Ref [13], namely that they are not analytically derived. Thus the mathematical
foundation of probability models and statistical analyses of genomic problems
like the one addressed here would benefit more from advances like those in Ref
[6] than by further characterization of empirical models such Eq 3.

For example, if we knew the probability law of d under random rearrange-
ments, or even its expectation, we could most easily investigate the following
hypothesis, suggested by our results on the linearity of the dependence of d′ on
χ: The imposition of a contig structure has the same effect on d as adding further
rearrangements. In a continuous approximation of the τ—d relationship,

dE(d)
dχ

=
dE(d)

dτ
= α(τ). (8)

If this could be verified, analytically or, failing that, empirically, it would make
for an elegant framework for our results.
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