
J Braz Comput Soc
DOI 10.1007/s13173-012-0064-8

S I : G R A P H C L I Q U E S

Gene clusters as intersections of powers of paths

Vítor Costa · Simone Dantas · David Sankoff ·
Ximing Xu

Received: 31 January 2012 / Accepted: 1 February 2012
© The Brazilian Computer Society 2012

Abstract There are various definitions of a gene cluster de-
termined by two genomes and methods for finding these
clusters. However, there is little work on characterizing con-
figurations of genes that are eligible to be a cluster accord-
ing to a given definition. For example, given a set of genes
in a genome, is it always possible to find two genomes such
that their intersection is exactly this cluster? In one version
of this problem, we make use of the graph theory to re-
formulated it as follows: Given a graph G with n vertices,
do there exist two θ -powers of paths GS = (VS,ES) and
GT = (VT ,ET) such that GS ∩GT contains G as an induced
subgraph? In this work, we divide the problem in two cases,
depending on whether or not G is an induced subgraph of
GS or GT . We show an O(n2) time algorithm that generates
the smallest θ -powers of paths GS and GT (with respect to
and the number of vertices) that contains G as an induced
subgraph. Finally, we discuss the problem when G is an in-
duced subgraph neither of GS nor of GT and we present a
method of finding the smallest power of a path when graph
G is a cycle Cn.

V. Costa · S. Dantas (�)
Instituto de Matemática e Estatística, Universidade Federal
Fluminense, 24.020-140, Niterói, Brazil
e-mail: sdantas@im.uff.br

V. Costa
e-mail: vitorsilcost@mat.uff.br

D. Sankoff
Department of Mathematics and Statistics, University of Ottawa,
Ottawa, Canada
e-mail: sankoff@uottawa.ca

X. Xu
Department of Statistics, University of Toronto, Toronto, Canada
e-mail: ximing@utstat.utoronto.ca

Keywords Power of a path · Unit interval graph ·
Genome · Gene clusters

1 Introduction

Due to recent research on genetic mapping, a large amount
of information is available and stored in databases of vari-
ous research centers in the world. Processing these data, in
order to obtain relevant biological conclusions, is one of the
challenges in biology. One way to structure these data is us-
ing comparison of genomes, i.e., the search for similarities
and differences between two or more organisms. The central
question of this paper proposes to deal with a problem in this
area by asking: given a set of genes in a genome, called clus-
ter, is it always possible to find two genomes such that their
intersection is exactly this cluster? First, we show the mod-
eling presented by Adam et al. [1] and Sankoff and Xu [8],
which will be used in this paper.

A marker is a gene with a known location on a chro-
mosome. Let VX be the set of n markers in the genome X.
These markers are partitioned among a number of total or-
ders called chromosomes. For markers g and h in VX on the
same chromosome in X, let gh ∈ EX if the number of genes
intervening between g and h in X is less than θ , where θ ≥ 1
is a fixed neighborhood parameter. We call GX = (VX,EX)

a θ -adjacency graph if its edges are determined by a neigh-
borhood parameter θ .

Consider the θ -adjacency graphs GS = (VS,ES) and
GT = (VT ,ET) with a non-null set of vertices in common
VST = VS ∩VT . We say that a subset of V ⊆ VST is a gener-
alized adjacency cluster if it consists of vertices of a maxi-
mal connected subgraph of GST = (VST ,ES ∩ET). We call
G = GST [V] the subgraph induced by set V .

mailto:sdantas@im.uff.br
mailto:vitorsilcost@mat.uff.br
mailto:sankoff@uottawa.ca
mailto:ximing@utstat.utoronto.ca

J Braz Comput Soc

Let G = (V (G),E(G)) be a graph with vertex set V (G)

and edge set E(G), such that |V (G)| = n. Let v, v̄ ∈ V (G).
The distance between vertices v and v̄, denoted by dG(v, v̄),
is the number of edges in a shortest path between v and
v̄ in G. A path between two vertices v0 and vt of graph
G is a sequence of vertices v1, v2, . . . , vt such that vivi+1

is an edge of G, 1 ≤ i ≤ t − 1. Let Pn be a graph that is
a path with n vertices. A θ -power of a path Pnθ , denoted
by P θ

nθ
, θ > 0, is graph such that V (P θ

nθ
) = V (Pnθ) and

E(P θ
nθ

) = {vv̄ : dPnθ
(v, v̄) ≤ θ with v, v̄ ∈ V (P θ

nθ
)}. For the

benefit of the reader, we denote the power of a path P θ
nθ

by
P θ . The definition of a chromosome with nθ markers in a θ -
adjacency graph is similar to a power of a path P θ

nθ
. Now, the

central question of this work can be reformulated as follows:

Question 1 ([2, 5]) Given a connected graph G, do there
exist GS and GT , two θ -powers of paths PS and PT , whose
intersection contains G as an induced subgraph?

If the answer is yes, we are also interested in finding the
minimum value of power θ and number vertices nθ for these
two θ -powers of paths.

In order to contribute to this challenging problem, we di-
vide our study in two cases, depending on whether or not G

is an induced subgraph of GS or GT . First, we give some
definitions. We say that G is an unit interval graph if there
exists a family I of intervals (a, b) on the real line such that
each v ∈ V (G) can be put in a one-to-one correspondence
with (av, bv) ∈ I ; the intervals in I are of same length; and
vv̄ is a edge of E(G) if, and only if, (av, bv) ∩ (av̄, bv̄) �= ∅.
This family of intervals is called an interval model for G.
Lin et al. [6] and Soulignac [9] present a proof that the class
of proper interval graphs precisely the class of unit interval
graphs. There exist linear-time recognition algorithms for
unit interval graphs, for example Figueiredo et al. [4] and
Corneil et al. [3].

Brandstädt et al. [2] and Lin et al. [5] proved indepen-
dently the following structural property:

Theorem 1 ([2, 5]) A graph G is an induced subgraph of a
power of a path if, and only if, G is an unit interval graph.

Thus, given an unit interval graph G with n vertices, there
exists a θ -power of a path Pnθ that contains G as an induced
subgraph. But the proofs of the structural characterization
given by Theorem 1 [2, 5] does not lead to an algorithm that
constructs GS and GT for Question 1 with minimum value
of power θ and number vertices nθ .

In the paper [6], the authors show an O(n) time algorithm
that includes new intervals into a proper interval model I

of a connected graph G, constructing an extended model
I ′ containing I . This extended model I ′ gives an implicit

representation of a power of a path for all proper interval
graph G, but the number of inserted intervals, or the size
of the power θ , cannot be minimum. The authors also re-
mark that any explicit representation would require O(n2)

steps.
We present in this work an O(n2) time algorithm that

generates, from a connected unit interval graph G, an ex-
plicit representation of the smallest θ -power of path, GS

(with respect to θ and to the number of vertices), that con-
tains G as an induced subgraph. Next, we construct GT , a
θ -power of a path with the same number of vertices of GS ,
such that the intersection GS ∩GT contains G as an induced
subgraph.

This paper is organized as follows. In Sects. 2 and 3, we
present the algorithm and we prove its correctness and com-
plexity. In Sect. 4, we discuss the problem when G is an
induced subgraph neither of GS nor of GT and we present a
method of finding the smallest power of a path when graph
G is a cycle Cn.

2 The algorithm

Our result is based on the ordering of the vertex set of G,
given by Algorithm Recognize [3], which satisfies the prop-
erty proved by Roberts in [7]:

Property 2 A graph G is an unit interval graph if and only
if there is an order < on vertices such that for all vertices v,
the closed neighborhood of v is a set of consecutive vertices
with respect to the order <.

Since all powers of paths are unit interval graphs, we can
insert the vertices of V (G) in the vertex set of a power of a
path P θ

nθ
until this power of a path contains G as an induced

subgraph.
This construction is done by Algorithm CPP as follows.

First, let v1 < v2 < · · · < vn be an ordering of V (G) given
by Algorithm Recognize [3]. We consider θ0 as the number
of vertices of the maximal clique that contains v1, minus
one; and we insert the vertices of this clique in P θ0 . The
Algorithm CPP constructs a sequence of power of a paths
P θ0 ⊂ P θ1 ⊂ · · · ⊂ P θl−1 ⊂ P θl such that θi = θi−1 + 1.

Let v be the first vertex non-adjacent to v1 in the order
on V (G). If v is adjacent to v2, Algorithm CPP must insert
v in the vertex of P θ0 that is at distance θ0 + 1 from vertex
v1 in P θ0 . Similarly, if v is not adjacent to vt , but is adjacent
to vt+1, Algorithm CPP must insert v in the vertex of P θ0

that is at a distance θ0 + 1 from vertex vt in P θ0 . This is
done by inserting t −1 vertices between the vertex of largest
index adjacent to v1 and v in P θ0 . Now, suppose that there
exist at least two vertices v, v̄ that are not adjacent to v1 and
adjacent to v2. Let v̄ be the second vertex of this set. In order

J Braz Comput Soc

to minimize the number of vertices of P θ0 , vertex v̄ must be
a vertex of P θ0 at distance θ0 + 2 of vertex v1 in P θ0 . Then
Algorithm CPP must call Procedure SHIFT to increase θ0 to
θ1 := θ0 +1 because of the edge v̄v2. On the other hand, this
increase adds several edges in P θ0 which are not in E(G).
Thus, Procedure SHIFT adjusts the power of a path P θ0 for
the new θ1, by inserting vertices in P θ0 in order to preserve
the adjacencies and non-adjacencies between vertices of G

and generates a new P θ1 . Algorithm CPP proceeds until all
vertices of V (G) are included in P θ

nθ
, a smallest power of a

path with respect to θ and nθ .
Before describing Algorithm CPP, we borrow some defi-

nitions from [3]. Given an ordering of V (G) returned by Al-
gorithm Recognize [3], then orderG(v) is the position of ver-
tex v considering this ordering; ξG(v) = max{orderG(v) :
v̄ ∈ NG[v]} and ηG(v) = min{orderG(v̄) : v̄ ∈ NG[v]},
where NG[v] = {w ∈ V (G) : vw ∈ E(G)} ∪ {v}. Let v ∈
V (G) and u ∈ V (P θ). We refer to orderP θ (v) as the po-
sition of vertex v in the ordering of the vertex set of
P θ , i.e., orderP θ (v) = i, if ui = v in P θ . We denote
ξP θ (u) = max{orderP θ (ū) : ū ∈ NPθ [u]} and ηPθ (u) =
min{orderP θ (ū) : ū ∈ NPθ [u]}.

Next, we present Algorithm CPP and Procedure SHIFT.

Algorithm CONSTRUCTING_POWER_OF_PATH(CPP)

– Input: a connected unit interval graph G and an order-
ing of V (G), v1 < · · · < vn, given by Algorithm Recog-
nize [3].

– Output: a smallest power of a path, P θ
nθ

, with respect to
θ and to number of the vertices nθ , that contains G as an
induced subgraph.

1. θ := ξG(v1) − 1.
2. P θ := (u1, u2, . . . , uθ(n−1), uθ(n−1)+1)

null-vector.

3. For j := 1 to ξG(v1) do
uj := vj .

4. For i := 1 to ηG(vn) − 1 do
For j := 1 to ξG(vi+1) − ξG(vi) do

uorder
Pθ (vi)+θ+j := vξG(vi)+j .

If |orderP θ (vξG(vi)+j)−
orderP θ (vi+1)| > θ then

SHIFT(P θ [u1, u2, . . . ,

uorder
Pθ−1 (vi)+θ+j]).

5. Return P θ := (u1, u2, . . . , uorder
Pθ (vn)).

Procedure SHIFT receives as input a smallest power of a
path P θ that contains G[v1, . . . , vl−1], ξG(v1) + 1 ≤ l ≤ n

as an induced subgraph in P θ . Power P θ contains the last
vertex vl inserted by Algorithm CPP. Vertex vl raises Pro-
cedure SHIFT because vl is not adjacent to some vertex vl−t

in P θ , but vl−t vl ∈ E(G).

Fig. 1 Algorithm CPP returns
the 2-power of path
P6 = v1, v2, v3,0, v4, v5 for unit
interval graph G

Procedure SHIFT

– Input: a smallest power of a path P θ that contains
G[v1, . . . , vl−1] as an induced subgraph.

– Output: a smallest power of a path, P θ+1, that contains
G[v1, . . . , vl] as an induced subgraph.

1. θ := θ + 1.
2. P θ := (w1,w2, . . . ,wθ(l−1)+1) null-vector.
3. k := max{orderP θ−1(v) : orderP θ−1(v)

< ηPθ−1(unθ−1) − 1, v ∈ V (G)}
s := min{t ≥ 1 : t ≡ k mod θ}.

4. For j := 1 to s do
wj := uj .

5. For j := s + 1 to k + 1 do
If j ≡ (s + 1)mod θ

then worder
Pθ (uj−1)+2 := uj ;

else worder
Pθ (uj−1)+1 := uj .

6. For j := k + 2 to nθ−1 do
worder

Pθ (uj−1)+1 := uj .

7. Return P θ .

Algorithm CPP returns P θ
nθ

, the smallest power of a path
(with respect to θ and nθ) that contains G as an unit interval
graph. We construct two powers of paths, GT = (VT ,ET)

and GS = (VS,ES), from P θ
nθ

as follows. First, VT = VS =
V (P θ

nθ
). Then, vertices of VT , which are not in V , receive

different labels from vertices in V (P θ
nθ

).
We show an example of an unit interval graph G in Fig. 1.

For this graph G, Algorithm CPP returns GS , the 2-power
of path PS = v1, v2, v3,0, v4, v5. Then, GT is a 2-power of
path PT = v1, v2, v3, vb, v4, v5.

3 Proofs

In this section, we present the proofs of correctness of the
Procedure SHIFT (Lemma 1) and Algorithm CPP (Theo-
rem 4).

Lemma 1 Let P θ be a smallest power of a path that
contains Gl−1 = G[v1, . . . , vl−1] as an induced subgraph,
with respect to the ordering v1 < · · · < vl−1. Let vl ∈
V (G) be the next vertex inserted in P θ and vl−t−1vl �∈
E(G), vl−t vl ∈ E(G) and dPnθ

(vl−t , vl) = θ + 1. Then,
the output of the Procedure SHIFT, the power of a path
P θ+1, is a smallest power of a path that contains Gl =
G[v1, . . . , vl−1, vl] as an induced subgraph, with respect to
the ordering v1 < · · · < vl−1 < vl .

J Braz Comput Soc

Fig. 2 Bracket indicates
possible positions of vl

Fig. 3 Bracket indicates
possible positions of vl−1

Proof Since vl−t−1vl �∈ E(G), vl−t vl ∈ E(G) and θ + 1 =
dPnθ

(vl−t , vl), the Procedure SHIFT must increase the
power θ by one unit (Step 1). But the increase of θ to θ + 1
creates several adjacencies in P θ between pairs of vertices
of the set {v1, . . . , vl} that are non-adjacent in G. In order to
preserve the adjacencies and non-adjacencies between ver-
tices of G in P θ , Procedure SHIFT is forced to insert one
vertex between the vertex that received vl−t−1 in P θ and
its consecutive vertex in P θ . Again, counting in descending
order from vertex vl−t−1, the adjacencies were violated in
each “block” of θ vertices in P θ . So, the procedure must
insert one vertex to each θ + 1 vertices in descending order,
from vertex vl−t−1 in P θ . We observe that the set formed
by the initial vertices of V (P θ) has cardinality less than or
equal to θ + 1, because dividing orderP θ (vl−t−1) by θ + 1
the remainder is greater than or equal to 1 and less than or
equal to θ + 1.

In each step, the procedure inserts the smallest number
of vertices necessary to guarantee that the power of a path
P θ+1, created by Procedure SHIFT, contains Gl[v1, . . . , vl]
as an induced subgraph. So, the power θ +1 and the number
of inserted vertices are minimum and, consequently, P θ+1

is a smallest power of a path that contains Gl[v1, . . . , vl] as
an induced subgraph. �

First, we prove that Algorithm CPP correctly returns a
smallest power of a path according to the ordering given by
Algorithm Recognize [3].

Lemma 2 Let G be a connected unit interval graph. Algo-
rithm CPP generates the smallest power of a path P θ

nθ
, with

respect to θ and nθ , that contains G as an induced subgraph
according to the ordering v1 < · · · < vn given by the input
of CPP.

Proof Algorithm CPP constructs a sequence of powers of
paths P θ0 ⊆ P θ1 ⊆ · · · ⊆ P θ , where θi = θi−1 + 1. This
is done by successively adding, in each P θi , vertices of
G following the input ordering, preserving the adjacen-
cies and non-adjacencies between vertices of G and min-
imizing θ and nθ . Initially, the power of a path P θ0 re-
ceives the maximal clique containing v1, i.e., V (P θ0) =
{u1, . . . , uξ

Pθ0 (v1)} and θ0 = ξG(v1) − 1. This is the small-

est power of a path that contains G[v1, . . . , vξG(v1)] as an
induced subgraph.

Suppose that the l − 1 first vertices, i.e., {v1, . . . , vl−1},
were already been inserted by Algorithm CPP in the power
of a path P θ , i.e., P θ is the smallest power of a path, with
respect to θ and nθ that contains G[v1, . . . , vl−1] as an in-
duced subgraph. Let vl ∈ V (G) the next vertex to be in-
serted by Algorithm CPP in P θ . Suppose that vl is adja-
cent, in P θ , to {vl−t , . . . , vl−1}. Vertex vl must be inserted
in P θ between positions ξP θ (vl−t−1) + 1 and ξP θ (vl−t) so
that G[v1, . . . , vl] be an induced subgraph of P θ . Then,
dPnθ

(vl−t−1, vl) ≥ θ + 1 and dPnθ
(vl−t , vl) ≤ θ . We con-

sider two cases with respect to the adjacencies of vl in G.
From now on, we refer to Fig. 2, and Fig. 3 and Fig. 4, where
dashed lines represent adjacencies.

Case 1: If t = θ , then after insertion of vl , θ + 1 ≤
dPnθ

(vl−t−1, vl), because the set {vl−t , . . . , vl−1} has t = θ

elements (see Fig. 2). In order to minimize θ and nθ , Al-
gorithm CPP must insert vl in the consecutive vertex to
vl−1 in the power of a path P θ , and as a consequence
dPnθ

(vl−t , vl) ≤ θ + 1. In effect, since vl−1 is adjacent

to vl−t in P θ , by hypothesis, vl−1 was inserted in P θ

such that dPnθ
(vl−t , vl−1) ≤ θ and vl was inserted in the

consecutive vertex to vl−1 in P θ , then the claim is true.
If dPnθ

(vl−t , vl) ≤ θ , Algorithm CPP inserted vl without

changing θ , the number of vertices of P θ became nθ +1, and
so this insertion was minimum. If dPnθ

(vl−t , vl) = θ +1, Al-
gorithm CPP called the Procedure SHIFT and, by Lemma 1,
we conclude the proof.

Case 2: If 1 < t < θ , Algorithm CPP must insert vl in
P θ such that dPnθ

(vl−t−1, vl) ≥ θ + 1 so that vl−t−1 and vl

are not adjacent. We observe the position of vl−1 in P θ . If
vl−1 is not adjacent to vl−t−1 in P θ (see Fig. 3), in order
to minimize the number of vertices of P θ , Algorithm CPP
inserts vl in the consecutive vertex to vl−1. By hypothesis,
vertex vl−1 was inserted in P θ so that dPnθ

(vl−t , vl−1) ≤ θ .
Then, if dPnθ

(vl−t , vl−1) < θ , we have dPnθ
(vl−t , vl) ≤ θ .

Thus vl was inserted in P θ without changing θ , the number
of vertices of P θ became nθ + 1, and so this insertion was
minimum. If dPnθ

(vl−t , vl−1) = θ , we have dPnθ
(vl−t , vl) =

θ + 1, Procedure SHIFT was called and, by Lemma 1, we
conclude the proof.

If vl−1 is adjacent to vl−t−1 in P θ (see Fig. 4), the posi-
tion of vl−t−1 in P θ is between l − t + 1 and ξP θ (vl−t−1),

J Braz Comput Soc

Fig. 4 Bracket indicates possible positions of vertices vl−1 and vl

including them. Again, in order to minimize the number
of vertices of P θ , vertex vl is inserted (ξP θ (vl−t−1) −
orderP θ (vl−1)) vertices after vertex vl−1 in P θ . Thus,

dPnθ
(vl−t−1, vl)

= dPnθ
(vl−t−1, vl−1)

+ (
ξP θ (vl−t−1) − orderP θ (vl−1)

) + 1

= (
orderP θ (vl−1) − orderP θ (vl−t−1)

)

+ (
ξP θ (vl−t−1) − orderP θ (vl−1)

) + 1

= (
ξP θ (vl−t−1) − orderP θ (vl−t−1)

) + 1 = θ + 1.

Since dPnθ
(vl−t , vl) < dPnθ

(vl−t−1, vl) = θ + 1, we have

dPnθ
(vl−t , vl) ≤ θ . So, vl was inserted in P θ without chang-

ing θ , and the number of vertices of P θ became nθ +
(ξP θ (vl−t−1) − orderP θ (vl−1)) + 1. This insertion was min-
imum, because dPnθ

(vl−t−1, vl) = θ + 1.
This concludes the proof of the Lemma 2. �

In order to show that the Algorithm CPP returns the
smallest power of a path containing G as an induced sub-
graph, we present two results with a given power of a
path P σ containing G as an induced subgraph. First, we
shall give some notation from [3]. Given an unit interval
graph G and an unit interval model associated to its vertices
I = {v1, v2, . . . , vn}, we recall that the interval associated
to vertex v is (av, bv). We say that v1, v2, . . . , vn is a nat-
ural labeling for the vertices of G, if avi

≤ avi+1 , for each
1 ≤ i ≤ n − 1. The ordering v1 < v2 < · · · < vn is a natu-
ral ordering, if v1, v2, . . . , vn is a natural labeling for V (G).
A vertex is a left anchor if it can receive the label v1 in some
natural labeling for V (G). Consider the model I ′ obtained
by mirroring an unit interval model I (that is, replacing each
interval (a, b) by (−b,−a)). Model I ′ is also a valid unit in-
terval model for G, so the rightmost interval in I is also a
left anchor.

In the next results, we show properties of the ordering of
V (G) induced by a natural ordering that is generated by the
subscripts of a natural labeling of a power of a path.

Lemma 3 Let P σ
nσ

be a power of a path that contains G as
an induced subgraph. The ordering of the vertices of V (G)

induced by a natural ordering of the vertices of V (P σ) sat-
isfies Property 2.

Proof Suppose that this ordering of V (G) does not sat-
isfy Property 2. Then, there exist three vertices vr , vs, vt ∈
V (G) such that vr < vs < vt with vrvs �∈ E(G) and
vrvt ∈ E(G). It follows that vrvt ∈ E(G) ⊂ E(P σ). There-
fore, 1 ≤ |orderPσ (vr) − orderPσ (vt)| ≤ σ . Since vr <

vs < vt in V (P σ), we have |orderPσ (vr) − orderPσ (vs)| ≤
|orderP (vr) − orderP (vt)|, and then 1 ≤ |orderPσ (vr) −
orderPσ (vs)| ≤ σ . Consequently, vrvs ∈ E(P σ) and vrvs �∈
E(G), i.e., P σ

nσ
does not contain G as an induced sub-

graph. �

Vertices v, v ∈ V (G) are indistinguishable vertices (twin
vertices) if NG[v] = NG[v]. The next result states that it is
possible to change the position, between indistinguishable
vertices of V (G) in a natural ordering of V (P σ).

Lemma 4 Let v, v ∈ V (G) such that NG[v] = NG[v] with
v = ui and v = uj in V (P σ). If we change the positions of
vertices v and v in P σ , i.e., v = uj and v = ui , graph G will
still be an induced subgraph of P σ .

Proof Without loss of generality, suppose i < j . By
Lemma 3, the ordering of V (G) induced by a natural
ordering of V (P σ) satisfies Property 2. So, NG[v] =
{vηG(v), . . . , vξG(v)} and NG[v] = {vηG(v), . . . , vξG(v)}. Since
N [v] = N [v], we have ξG(v) = ξG(v) and ηG(v) = ηG(v).
Then, vξG(v) = vξG(v), vηG(v) = vηG(v), vξG(v)+1 = vξG(v)+1

and vηG(v)−1 = vηG(v)−1. Thus, by changing the posi-
tions of vertices v and v in P σ , we have orderPσ (v) −
orderPσ (vηG(v)−1) ≥ σ + 1; then edge vvηG(v)−1 �∈ E(P σ).
Also, for any v′ ∈ V (G) with orderG(v′) < orderG(vηG(v)−1),
edge vv′ �∈ E(P σ). Similarly, orderPσ (vξG(v)+1) −
orderPσ (v) ≥ σ + 1, i.e., edge vvξG(v)+1 �∈ E(P σ) and also,
for any v′ ∈ V (G) with orderG(vξG(v)+1) < orderG(v′),
edge vv′ �∈ E(P σ).

Analogously, σ ≥ orderPσ (v) − orderPσ (vηG(v)), i.e.,
edge vvηG(v) ∈ E(P σ) and, for any v′ ∈ V (G) with
orderG(vηG(v)) < orderG(v′) < orderG(v), edge vv′ ∈
E(P σ). Similarly σ ≥ orderPσ (vξG(v)) − orderPσ (v), i.e.,
edge vvξG(v) ∈ E(P σ) and, for any v′ ∈ V (G) with
orderG(v) < orderG(v′) < orderG(vξG(v)), edge
vv′ ∈ E(P σ). �

J Braz Comput Soc

Fig. 5 Graph G is not induced
subgraph of GS and GT

In what follows, we denote by vi <B vj if orderG(vi) <

orderG(vj) considering the ordering of V (G) given by Al-
gorithm Recognize [3]. First, Theorem 4, we need two re-
sults.

Theorem 3 (Theorem 2.2 [3]) Let I be an unit interval
model of an unit interval graph G with natural labeling
v1, . . . , vn. Then, for all vertices v̄, v ∈ V (G), if av̄ < av

but v <B v̄, we have NG[v] = NG[v̄].

As consequence of Theorem 2.3 of [3], we have the fol-
lowing result.

Lemma 5 ([3]) Let v′
1 <B v′

2 <B · · · <B v′
n be an order-

ing of V (G) given by Algorithm Recognize [3] of an unit
interval graph G. Given a natural labeling v1, . . . , vn then
NG[v′

1] = NG[v1] or NG[v′
1] = NG[vn].

Finally, the correctness of Algorithm CPP is given by
theorem below.

Theorem 4 Let G be an unit interval graph. Algorithm CPP
returns the smallest power of a path P θ

nθ
with respect to θ

and nθ , that contains G as an induced subgraph.

Proof Let P σ
nσ

be the smallest power of a path that contains
G as an induced subgraph. Let u1 < · · · < unσ be a natural
ordering of V (P σ) and let v1 < · · · < vn be the ordering
of V (G) induced by the natural ordering of V (P σ). Clearly,
v1, . . . , vn is a natural labeling of V (G). Let I be a family of
intervals for this labeling of V (G), such that each v ∈ V (G)

is associated to (av, bv) ∈ I .
If we prove v1 < v2 < · · · < vn is equal to v′

1 <B v′
2 <B

· · · <B v′
n up to indistinguishable vertices, we have θ = σ

and nθ = nσ . In fact, since P σ is the smallest power of a
path that contains G as an induced subgraph, then σ ≤ θ

and nσ ≤ nθ . On the order hand, by Lemma 2, the power
of a path P θ returned by Algorithm CPP is the smallest
power of a path that contains G as an induced subgraph
with respect to the ordering, v′

1 <B v′
2 <B · · · <B v′

n. So,
if this ordering is equal to v1 < v2 < · · · < vn, up to indis-

tinguishable vertices, by Lemma 4, P σ contains G as an
induced subgraph with respect to the ordering v′

1 <B v′
2 <B

· · · <B v′
n. Then, by minimality of θ and nθ with respect to

v′
1 <B v′

2 <B · · · <B v′
n, we have σ ≥ θ and nσ ≥ nθ .

First, suppose that the left anchor v1 is equal to v′
1.

Suppose, by absurd, that there exist v, ṽ ∈ V (G), such
that v < ṽ, ṽ <B v and NG[v] �= NG[ṽ]. Since v < ṽ then
av ≤ aṽ . If av = aṽ , since all intervals of I have the same
length, we have bv = bṽ and hence NG[v] = NG[ṽ] a con-
tradiction to the hypothesis. If av < aṽ , since ṽ <B v then,
by Theorem 3, NG[v] = NG[ṽ], a contradiction to the hy-
pothesis. Thus, for all pair of vertices v, ṽ ∈ V (G) such that
v < ṽ and ṽ <B v, then NG[v] = NG[ṽ]. Consequently, we
have σ = θ and nσ = nθ .

Now, suppose that the left anchor v1 is different from
v′

1. By Lemma 5, either NG[v1] = NG[v′
1] or NG[vn] =

NG[v′
1]. If NG[v1] = NG[v′

1], by Lemma 4, we can change
the positions of these vertices in V (P σ), i.e., uorderPσ (v′

1)
=

v1 and uorderPσ (v1) = v′
1 and G will still be an induced sub-

graph of P σ . After this change v′
1 < v2 < · · · < v1 < · · · <

vn is the new ordering of V (G) induced by the ordering
of V (P σ). We repeat the same argument used in the pre-
vious case, where v1 is equal to v′

1 and we conclude the
proof. If NG[vn] = NG[v′

1], since vn is the left anchor of
the natural labeling vn < vn−1 < · · · < v1 of V (G) induced
by the natural ordering unσ < · · · < u1 of V (P σ) then, we
can repeat the previous argument for the natural labeling
vn < vn−1 < · · · < v1 and so we conclude the proof. �

The Algorithm CPP analyzes each vertex of G in the or-
dering returned by Algorithm Recognize [3] a single time. In
the worst case, the Algorithm CPP calls Procedure SHIFT
for each vertex vl ∈ V (G) only once. Since for each vertex
vl the Procedure SHIFT analyzes the set of vertices of Gl at
most once, the complexity of the Algorithm CPP is O(n2).

4 G is not an induced subgraph of GS and GT

If we relax the constraint that G must be an induced sub-
graph of GS or GT then even for unit interval graphs it
is possible to find two powers of paths, whose intersection

J Braz Comput Soc

Fig. 6 Claw

Fig. 7 3-sun (S3)

Fig. 8 Net (S3)

contains G as an induced subgraph, smaller than the answer
given by Algorithm CPP. See an example in Fig. 5.

If graph G is an unit interval graph then G contains no
induced Claw (Fig. 6), S3 (Fig. 7), S3 (Fig. 8) and Cycle
(Cn), n ≥ 4. If G is a cycle Cn, n ≥ 4. Then the smallest
θ -powers of paths, GS and GT , such that GS ∩GT contains
Cn as induced subgraph can be obtained as follows. First,
we construct GS : for 1 ≤ j ≤ n

2 �, u2j−1 := vj ; and
1 ≤ j ≤ �n

2 �, u2j := vn+1−j . Now, we construct GT : for
1 ≤ j ≤ n

2 �, w2j−1 := vj+1; and 1 ≤ j ≤ �n
2 �, w2j := vk ,

where k = (n + 2 − j)modn. See an example when G is a
C6 in Fig. 9.

Theorem 5 Let GS and GT be 2-powers of paths with n
vertices constructed by the previous method. Then GS ∩ GT

is Cn, n ≥ 4.

Proof Let GS be the 2-power of path PS = u1, . . . , un, and
let GT be the 2-power of path PT = w1, . . . ,wn constructed
by the previous method. Since the distance between consec-
utive vertices of G in GS (resp. GT) is less than or equal
to 2, GS (resp. GT) contains G as subgraph.

For each vi ∈ Cn, i ∈ {2, . . . , n
2 �, n

2 � + 2, . . . , n}, and
3 ≤ j ≤ n − 2, if uj = vi with j odd then wj−2 = vi ; if j is
even, we have wj+2 = vi .

Now, let vi ∈ Cn, if uj = vi , 3 ≤ j ≤ n − 2 with j

odd (resp. even), then wj−2 = vi (resp. wj+2 = vi), and
its neighbors uj−1 = vk = wj−1+2 (resp. uj−1 = vk−1 =
wj−1−2) and uj+1 = vk−1 = wj+1+2 (resp. uj+1 = vk =
wj+1−2). We conclude that dPS

(vi, vk) = dPS
(vi, vk−1) = 1,

dPT
(vi, vk) = 3 and dPT

(vi, vk−1) = 5, i.e., vivk, vivk−1 ∈
E(GS) and vivk, vivk−1 �∈ E(GT). Hence, vivk, vivk−1 �∈
GS ∩ GT . �

5 Conclusion

In this work, we developed an O(n2) time algorithm that
generates, from a connected unit interval graph G, an ex-
plicit representation of the smallest θ -power of path GS

(with respect to θ and to the number of vertices) that con-
tains G as an induced subgraph. We construct GT , a θ -
power of a path with the same number of vertices of GS ,
such that the intersection GS ∩GT contains G as an induced
subgraph.

We remark that θ can be greater than or equal to the size
of a maximum clique of the graph G, ω(G). We present in
Fig. 10 an example where G has ω(G) = 4 and Algorithm
CPP returns θ = 5, but the difference between θ and ω(G)

can be greater than 1.
In case graph G is not an induced of GS and GT , we

show a method that generates GS and GT , 2-powers of paths
with n vertices, whose intersection is Cn, n ≥ 4.

As future work, we intend to investigate this problem for
other classes of graphs. We remark that all remaining for-
bidden induced subgraphs of unit interval graphs (Figs. 6, 7
and 8), have answer YES to Question 1.

For a Claw graph, we see that GS is the 2-power of path
PS = v2, a, v1, v3, v4; and GT is the 2-power of path PT =
v3, b, v1, v2, v4. For a 3-sun graph, we find that GS and

Fig. 9 Graph G = C6 and the
respective GS and GT ,
2-powers of paths with 6
vertices

J Braz Comput Soc

Fig. 10 Graph G with n = 10 and ω(G) = 4 and the output returned by Algorithm CPP: P θ
nθ

with nθ = 21 and θ = 5

GT are 4-powers of paths PS = v5, a, b, v4, v6, v3, v1, v2

and PT = v1, v6, x, v5, v2, v4, y, v3, respectively. For a Net
graph, we see that GS and GT are 2-powers of paths PS =
v4, v2, v1, v5, v3, a, v6 and PT = v4, b, v1, v5, v3, v2, v6, re-
spectively.

Acknowledgements This research was supported by CNPq and
FAPERJ.

We are really grateful to professor Jayme Szwarcfiter for having
presented to us the paper [5] in the very beginning of our work and for
fruitful discussions on this topic. We are also thankful to the anony-
mous referees for their careful reading and valuable contributions.

References

1. Adam Z, Choi V, Sankoff D, Zhu Q (2008) Generalized gene adja-
cencies, graph bandwidth and clusters in yeast evolution. In: Lec-
ture Notes in Bioinformatics, vol 4983, pp 134–145

2. Brandstädt A, Hundt C, Mancini F, Wagner P (2010) Rooted di-
rected path graphs are leaf powers. Discrete Math 310:897–910

3. Corneil DG, Kim H, Natarajan S, Olariu S, Sprague A (1995) Sim-
ple linear time recognition of unit interval graphs. Inf Process Lett
55:99–104

4. Figueiredo CMH, Meidanis J, Mello CP (1995) A linear-time al-
gorithm for proper interval graph recognition. Inf Process Lett
56:179–184

5. Lin MC, Rautenbach D, Soulignac FJ, Szwarcfiter JL (2011) Pow-
ers of cycles, powers of paths, and distance graph. Discrete Appl
Math 159:621–627

6. Lin MC, Soulignac FJ, Szwarcfiter JL (2009) Short models for unit
interval graphs. Electron Notes Discrete Math 35:247–255

7. Roberts FS (1968) Representations of indifference relations. Stan-
ford University, Stanford

8. Sankoff D, Xu X (2008) Tests for gene clusters satisfying the gen-
eralized criterion. Lect Notes Comput Sci 5167:152–160

9. Soulignac FJ (2010) On proper and helly circular-arc graphs. Uni-
versidad de Buenos Aires, Buenos Aires

	Gene clusters as intersections of powers of paths
	Abstract
	Introduction
	The algorithm
	Proofs
	G is not an induced subgraph of GS and GT
	Conclusion
	Acknowledgements
	References

