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The process of whole genome doubling (WGD) gives rise
to two copies of each chromosome in a genome, containing the
same genes in the same order. Through an attrition mechanism
known as fractionation, one of each pair of duplicate genes is
lost over evolutionary time, resulting in an interleaving patterns
of deletions from duplicated regions [1]. This differentiates the
WGD/fractionation model from general approaches to gene
duplication, pioneered by El-Mabrouk [2].

An important biological controversy in evolutionary theory
arises of whether duplicated genes are deleted through random
excision – elimination of excess DNA – namely the deletion
of chromosomal segments containing one or more genes [3],
which we term the “structural” mechanism, or through gene-by
gene events such as epigenetic silencing and pseudogenization
[4], which are “functional” mechanisms.

This debate may be formulated in terms of deletion events
removing a number X of contiguous genes, where X is drawn
from a geometric distribution γ with mean µ. Here the one-
at-a-time deletion model is represented by µ = 1, while the
random number of deletions at a time holds if µ > 1.

In this paper, we investigate the discrimination problem of
choosing between the two models based on deletion run-length
statistics (resulting from overlapping deletion events). This
involves comparing an observed genome containing single-
copy genes, originally members of duplicate pairs, to the
predictions of the models for µ = 1 and for µ > 1. This
requires knowledge of the run-length distribution, given a total
number of deleted genes and remaining duplicate pairs. While
this is easily calculated for the case µ = 1, the the distribution
for the opposing scenario µ > 1 is not known.

For modeling purposes, we consider a doubled genome
made up of a pair of identical linear chromosomes each
containing genes g1, . . . , gN . At each time t = 1, 2, . . ., one
such doubled gene gi is chosen at random, and a value a is
chosen from a geometric distribution γ with mean µ. Then
gi, gi+1, . . . , gi+a−1 are deleted from one of the genomes –
they become single-copy genes – unless some of these are
already single-copy. In the latter case, we skip existing single-
copy genes and proceed to convert the next double-copy genes
we encounter until a total of a double-copy genes have been
converted to single-copy. This model is biologically realistic,
although for simplicity, we assume all deletions take place
from one and the same genome. In a more complete model,

deletion events occur on one or the other chromosome, with
probabilities φ and 1− φ [5].

Overlapping deletion events and skipping result in the
creation of runs of single-copy genes whose length is the sum
of a number of geometric variables, which are not, however,
i.i.d., and thus do not produce a negative binomial distribution.
The run lengths of the remaining double-copy genes is geo-
metrically distributed with a probability distribution ρt, with a
mean νt that decreases with t [5], [6].

An attempt to determine ψt analytically starts with the
calculation of how many deletion events have overlapped to
form a run of single-copy genes at time t. We can derive a
formula to predict whether a deletion event would create a
new run of single-copy genes, probability p0; overlap exactly
one existing run, thus extending it without changing the total
number of runs, probability p1; overlap two runs, producing
one larger combined run in place of the two pre-existing ones,
probability p2; and so on. These probabilities all depend solely
on γ and ρt. For example, we examine the case of p0.

The proportion of terms in runs of length l is lρt(l)/νt,
where νt =

∑
l>0 lρt(l). The probability p0 that a deletion

event falls within a run of double-copy genes without deleting
the terms at either end is

p0 =
∑
l>2

lρt(l)
νt

l−1∑
j=2

1
l

l−j∑
a=1

γ(a)

=
1
νt

∑
l>2

ρt(l)
l−2∑
a=1

(l − a− 1)γ(a) (1)

where j indexes the starting position of the deletion within a
run of length l, and a is the number of terms deleted.

This formula requires quadratic computing time, but the pi
for higher i, require polynomial time of degree i + 2. These
probabilities, however, can in fact be reduced to closed form,
so that computing time is a negligible constant. In lieu of the
detailed calculations, here present the continuous version of
the deletion process, which is simpler. In this case, the two
identical chromosomes at time t = 0 are linear segments. At
each time t = 1, 2, . . . , a random point g is chosen on the
chromosome, and a value X is chosen from an exponential
distribution f(a) = 1

µe
− aµ , a ≥ 0, with mean µ. If X = a,

then the segment [g, g+a] is deleted from one of the genomes
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Fig. 1. Frequency of µ̂, the value for which D(Si)
µ,N,1−θ between the sample cumulative and the distribution Fµ,N,1−θ is minimal. All data involve a proportion

of 1− θ = 0.20 deleted genes. Left: N = 900, right: N = 300.

– [g, g + a] becomes a single-copy region – unless part of
it is already single-copy. In the latter case, we skip existing
single-copy regions and proceed to convert the next double-
copy region we encounter until a total measure a of double-
copy regions have been converted to single-copy.

In analogy with ρt in the discrete model, the lengths of
the remaining double-copy segments follow an exponential
distribution σt, with a mean νt that decreases with t.

The proportion of undeleted regions accounted for by
segments of length ldl is lσ(l)

νt
dl, where νt =

∫∞
0
lσ(l)dl. Then

the probability p0 that a deletion event falls completely within
an undeleted segment is

p0 =
∫ ∞
l=0

lσt(l)
νt

∫ l

x=0

1
l

∫ l−x

y=0

f(y)dy dx dl (2)

=
νt

µ+ νt
. (3)

We can prove by induction that the probability a deletion
event overlaps exactly q existing runs of deletions is:

pq =
νt

µ+ νt

(
µ

µ+ νt

)q
. (4)

Thus we have the surprisingly uncomplicated result that the
number q of pre-existing runs of single-copy regions over-
lapped by a new deletion event is geometrically distributed on
q = 0, 1, . . . with parameter µ/(µ+ νt).

Although having a closed form for pq constitutes progress
towards the computation of the run-length distribution ψt, or
eventually towards some analytical results on it, how to find
this distribution remains a difficult question. In the interim, we
may use simulations to study the discrimination problem.

For various combinations of the parameters µ,N and 1−θ,
we first estimated quite precisely (through 1000 simulations)
the cumulative distribution Fµ,N,1−θ of run lengths for single-
copy regions. Once these cumulative distributions were estab-
lished, we then carried out a discrimination study. For each
value of µ and N , we sampled 1000 new individual trajectories

of the deletion process at various values of 1 − θ. For each
value of 1 − θ, we set up “bins” corresponding to the fifteen
values of µ for which we had constructed cumulatives. Then
for each sample Si, we constructed the cumulative distribution
of runs of deleted genes of length 1, 2, . . .. We calculated the
Kolmogorov–Smirnov statistic D(Si)

µ,N,1−θ between the sample
cumulative and the distribution Fµ,N,1−θ for each fifteen
values of µ and assigned the sample to the bin corresponding
to the minimal value of D, which we called µ̂ for that sample.

Figure 1 shows the distributions of µ̂ for the 1000 samples
S1, . . . , S1000, for N = 900 and N = 300. A separate
distribution is drawn for each of the trial values of µ used to
generate the samples. The complete set of these distributions
can be used to to address the original problem of discriminating
between the gene-by-gene “functional model” (µ = 1) and the
random excision “structural” model (µ > 1). The distributions
are more dispersed for smaller N , and for higher values of µ
and 1− θ.
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