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1

CONSERVED SEGMENT STATISTICS
AND REARRANGEMENT INFERENCES

IN COMPARATIVE GENOMICS

David Sankoff

Abstract
The statistical treatment of chromosomal rearrangement has evolved along
with the biological methods for producing pertinent data. We trace the
development of conserved segment statistics through the mouse link-
age/human chromosome assignment data analyzed by Nadeau and Taylor
in 1984, through the comparative gene order information on organelles
(late 1980’s) and prokaryotes (mid-1990’s), to higher eukaryote genome
sequences, whose rearrangements have been studied without prior gene
identification. Each new type of data suggested new questions and led to
new analyses. We focus on the problems introduced when small sequence
fragments are treated as noise in the inference of rearrangement history.

1.1 Introduction

The history of modeling and quantitative analysis for comparative genomics has
been largely determined by the kinds of experimental data available at various pe-
riods (see the timeline in Table 1.1). For over eighty years, recombination-based
linkage maps have been used for studying genome rearrangements . Through
studies of giant salivary gland chromosomes in Drosophila, band structure be-
came a valuable tool seventy years ago, allowing the visualization of inverted
segments and the localization of their breakpoints with the microscope, and en-
abling the first rearrangement-based phylogeny.

Cytogenetics blossomed in the intervening years but modern banding tech-
niques for human and other eukaryotic chromosomes are little more than thirty
years old. These soon led to phylogenies for primates and and a number of
other groups. The last thirty years also saw the development of radiation hybrid
methodology as well as well as a number of sequence-level molecular biologi-
cal techniques, first for gene assignment to chromosomes, then for constructing
chromosomal maps of genes and other features at increasing levels of resolution.
Complete genome sequencing resulted in the first complete virus map in 1975
and the first complete organelle map in 1981, and increasing number of these
became available for comparative work in the mid-eighties. It is less than ten
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2 SEGMENT STATISTICS AND REARRANGEMENT INFERENCES

1921 recombination maps Sturtevant [48]
1933 chromosome bands (Drosophila) Painter [30]
1970 chromosome bands (human) Caspersson et al. [41]
1975 radiation hybrid Goss and Harris [16]
1975 virus genome sequences Sanger et al. [35]
1981 organelle genome sequences Anderson et al. [1])
1995 prokaryotic genome sequence Fleischmann et al. [13]
1996 eukaryotic genome sequences Goffeau et al. [15]
2001 human genome sequence [53,21]

Table 1.1 Availability of comparative genomic data.

years since whole genome sequences of prokaryotes could be compared, and it
is within the last five years that comparative genomics of eukaryotes could be
based on whole genome sequences.

There are at least two mathematically-oriented literatures in comparative ge-
nomics that go beyond traditional quantitative reports of intensive variables such
as base composition or codon usage or summary variables such as genome size
or gene content. One is the statistical analysis of genetic maps to quantitatively
characterize the chromosomal segments conserved in both of two genomes being
compared, as well as the breakpoints between these segments, dating to the fun-
damental paper of Nadeau and Taylor [28]. The other is the algorithmic inference
of rearrangement processes, highlighted by the remarkable work of Hannenhalli
and Pevzner [18,17,19], based on the comparison of complete gene orders. In this
chapter, we review statistical analyses based on recombination distance and on
gene order, as well as, very briefly, algorithms based on complete gene order, be-
fore focusing on the convergence of statistics and algorithmics in the comparison
of whole genome sequences.

1.2 Genetic (recombinational) distance
At the time Nadeau and Taylor developed their approach to conserved seg-
ment statistics, distance along chromosomes was quantified in terms of linkage
disequilibrium in recombination experiments, measured in centimorgans. They
observed that some genes known to be located on the same human chromosome
had homologous genes clustered on the same mouse chromosome linkage map,
generally in the same order or in exactly the inverse order. Their insight was that
the position of the mouse genes in these clusters could be used to determine the
average size µ of conserved segments and hence the total number n of conserved
segments, where the known total genome length is |G| = nµ. Since the different
clusters generally did not overlap, they made the assumption that each cluster
represented a sample of the genes in a single conserved segment. The data to be
considered was then of the form represented in Fig. 1.1.

Then the simplest form of the inference, though not exactly in Nadeau and
Taylor’s terms, is as follows: Let x1 < · · · < xh be order statistics based on h
independent samples from a uniform distribution on [a, b]. There are a number
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a x1 x2 · · · xh b

Fig. 1.1. Genes of known position x1 < · · · < xh in a conserved segment with
unknown endpoints (breakpoints) a and b.

of ways of estimating b − a: the maximum likelihood estimate is xh − x1 but
for small h this is obviously very biased towards underestimation. An unbiased
estimate of b− a, but one which is only defined for h ≥ 2, is

̂(b− a) =
h + 1
h− 1

(xh − x1). (1.1)

Nadeau and Taylor could not calculate µ by simply averaging the estimates
for the different segments, for two reasons. First, they could not observe those
segments containing no mapped genes, and for data quality reasons, they did not
consider segments containing only one gene. (In any case, the length estimators
do not give meaningful estimates for segments containing one gene.) Second, the
expected number of genes observed in a segment is proportional to the length
of that segment, which itself approximately follows an exponential distribution,
assuming a uniform distribution of breakpoints. Thus, the set of observed seg-
ment estimates must be fit to an exponential length distribution, weighted by
the probability that a segment of a specific length contains at least two mapped
genes. The parameter of this distribution is an estimate µ̂ of µ, the average
segment length. An estimate of the number of segments is then n̂ = |G|/µ̂.

1.3 Gene counts

We can use the uniformly distributed breakpoints component of the Nadeau-
Taylor procedure to estimate n without first estimating the size in centimorgans
of the observed segments, simply by counting the number of genes in each ob-
served segment.

We model the genome as a single long unit broken at n − 1 random break-
points into n segments, within each of which gene order has been conserved
with reference to some other genome. Little is lost in not distinguishing between
breakpoints and concatenation boundaries separating two successive chromo-
somes [38]. If the total number of genes is m, the marginal probability that a
segment contains r genes, 0 < r < m, has been shown [42] to be :

P (r) =
(

1 +
m

n + 1

)−1

(
m
r

)
(

n + m
r

) . (1.2)

We cannot directly compare the theoretical distribution P (r)with nr, the
number of segments observed to contain r genes, since we cannot observe n0, the
number of segments containing no identified genes, and hence n is unknown .
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Fig. 1.2. Comparison of relative frequencies nr, r > 0 of segments containing r
genes, with predictions of the Nadeau-Taylor model, for MLE n̂ = 141 and
Kolmogorov-Smirnov-based estimator n̂ = 200 [41].

We can, however, compare the frequencies nr with the predicted frequencies
n̂P (r), r > 0, for various estimators n̂, as illustrated in Fig. 1.2, our first analysis
based on the m =1423 human-mouse orthologies documented in 1996.

The largest discrepancy is the comparison between n1 and n̂P (1), due at least
in part to error in the identification of orthologous genes or other experimental
error in chromosome assignment, but also possibly to a genuine shortfall in the
model when predicting the number of short segments. We will return to this
question in Section 1.8 on genome sequences.

1.4 The Inference Problem
It might seem undeniable that the number of segments nr observed to contain r
genes, for r = 1, 2, · · · ,m would be useful data for inference about the Nadeau-
Taylor model, in particular about n, the unknown number of segments . It is
remarkable, then, that to estimate n from m and nr, only the number of non-
empty segments a =

∑
r>0 nr is important, since for practical purposes it behaves

like a sufficient statistic for the estimation of n [41], although sufficiency is not
strictly satisfied [20].

To estimate n, we study P (a,m, n) the probability of observing a non-empty
segments if there are m genes and n segments. Combinatorial arguments give:
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P (a,m, n) =

(
m− 1
a− 1

) (
n
a

)
(

n + m− 1
m

) , (1.3)

which is a constrained hypergeometric distribution with mean and variance:

µa =
mn

m + n− 1
, σ2

a =
n(n− 1)m(m− 1)

(n + m− 2)(n + m− 1)2
. (1.4)

Note that this model reduces to a classical occupancy problem of statistical
mechanics ( [12], p62).

The maximum likelihood estimate n̂, given m and a, is the value of n which
maximizes P . For given m and n, the expectation and the variance of n̂ can be
calculated making use of the probability distribution in eqn (1.3), except in the
special case of few data (m ≤ n) and every gene in a separate segment (a = m),
where the estimates are undefined.

Substituting a for µa in eqn (1.4) gives Parent’s estimator [31]

n̂ =
a(m− 1)
m− a

, (1.5)

which, when rounded to the nearest integer, coincides with the maximum like-
lihood estimator over the range of a,m and n likely to be experimentally inter-
esting, as long as some segments contain at least two genes .

Alternatives, extensions and generalizations of the Nadeau-Taylor and the
gene count approaches have been investigated by a number of researchers. Schoen
has shown that high marker (e.g. gene) density and high translocation/inversion
ratios greatly improve the accuracy of estimation [45,46]. Waddington et al. have
developed the theory in the direction of allowing different densities of breakpoints
for each chromosome [54] and have compared various approaches for their per-
formance in avian genomes, with their distinctly bimodal distribution of chromo-
some sizes [55]. The evolution of chromosome sizes have been studied analytically,
through simulation and empirically [38, 4, 10]. Marchand [27] initiated the sta-
tistical study of inhomogeneities in breakpoint densities and gene densities on
the chromosome. Housworth and Postlethwait [20] showed how the number of
observed conserved syntenies, i.e., pairs of chromosomes – one in each genome –
that share at least one ortholog, has some better statistical properties than the
number of observed segments.

1.5 What can we infer from conserved segments?

The comparative study of whole-genome maps makes no formal reference to the
processes that create the breakpoints while progressively fragmenting the con-
served segments, except for an implicit assumption that the number of break-
points and segments increases roughly in parallel with the number of rearrange-
ment events affecting either of the two genomes being compared. In observing
the order of segments along the chromosomes in one genome while noting to
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which chromosomes they correspond in the other genome, however, we can ex-
tract additional information about the relative proportion of intra-chromosomal
and inter-chromosomal events that gave rise to this pattern. Considering only
autosomes, i.e., setting aside the sex chromosomes, which are essentially excluded
from inter-chromosomal exchanges, let the total number of segments on a human
chromosome i be

n(i) = t + u + 1, (1.6)

where t is the number due to inter-chromosomal transfers, and u the number
due to local rearrangements. Under a random exchange model we can try to
predict how often two or more segments from the same mouse chromosome will
co-occur on the same human chromosome through inter-chromosomal events. By
then compiling co-occurrence frequencies from the empirical comparison of the
two genomes, we can estimate the the relative proportion of intra-chromosomal
and inter-chromosomal events.

We label the ancestral chromosomes 1, · · · , c, ignoring for the moment that
there may have been changes in the number of chromosomes due to fusions
and/or fissions in the human or mouse lineages or both. We model each chromo-
some as a linear segment with identified left-hand and right-hand endpoints. A
reciprocal translocation between two chromosomes h and k consists of breaking
each one, at some interior point, into two segments, and rejoining the four re-
sulting segments such that two new chromosomes are produced, each containing
a left-hand part of one of the original chromosomes and the right-hand part of
the other. We label each new chromosome according to which left-hand it con-
tains, but for each of its constituent segments, we retain the information of which
ancestral chromosome it derived from.

At the outset, assume the first translocation on the human lineage involves
ancestral chromosome i. We assume that its partner can be any of the c−1 other
ancestral autosomes with equal probability 1

c−1 , so that the probability that the
new chromosome labelled i contains no fragment of ancestral chromosome h,
where h 6= i, is exactly 1− 1

c−1 . For small t, after chromosome i has undergone
t translocations, the probability that it contains no fragment of the ancestral
chromosome h is approximately (1 − 1

c−1 )t, with some correspondingly small
corrections, for example to take into account the event that h previously translo-
cated with one or more of the t chromosomes that then translocated with i, and
that a secondary transfer to i of material originally from h thereby occurred.

Then the probability that the new (i.e., human) chromosome i now contains
at least one fragment from h is approximately 1 − (1 − 1

c−1 )t and the expected
number of ancestral chromosomes with at least one fragment showing up on
human chromosome i is

E(ci) ≈ 1 + (c− 1)[1− (1− 1
c− 1

)t], (1.7)
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where the leading 1 counts the fragment containing the left-hand endpoint of
the ancestral chromosome i itself.

We assume that our random translocation process is stochastically reversible.
This assumption should not introduce much error as long as chromosome sizes
do not deviate too much from their stationary distribution. Then we can treat
the mouse genome as ancestral and the human derived (or vice versa), instead
of considering them as diverging independently from a common ancestor. Now
E(ci) represents the expected number of mouse chromosomes with at least one
fragment showing up on human chromosome i.

As t increases for all the chromosomes, so that each human chromosome
contains segments from several mouse chromosomes, eqn (1.7) will start to over-
predict ci, since each translocation will be more likely to transfer fragments of
the same origin as those already contained in the chromosome i. Nevertheless,
substituting ci for E(ci) in eqn (1.7) gives us

t̂ =
log(c− 1)− log(c− ci)
log(c− 1)− log(c− 2)

, (1.8)

a good first estimate of t, where c = 19, the number of mouse autosomes. To
illustrate, for the 22 human autosomes, a 100 Kb resolution construction [52] in-
dicates 350 autosomal segments, while the sum of the ci is 109. Applying eqn (1.8)
to each chromosome and summing the 22 values of t̂ gives a total of 130 segments.
In other words, for 130 − 109 = 21 segments, two (or more) segments from the
same mouse chromosome are found on the same human chromosome because of
independent translocational events. By eqn (1.6), this leaves unaccounted for∑

u =
∑

n(i) −
∑

t− 22
= 350− 130− 22
= 198

segments, which must be attributed to local rearrangements such as inversion.
Table 1.2 shows the results of these calculations for this and a number of other

maps of various levels of resolution, based on genomic sequence or gene maps.
Of interest in the genome sequence-based results is the relative stability of the
estimates of the number of reciprocal translocations or other inter-chromosomal
events versus the great increase in local rearrangements over the analyses based
on gene maps. This reflects the discovery of high numbers of smaller-scale local
arrangements recognizable from genomic sequence [25,8] compared to gene maps.
As resolution increases, a greater proportion of these local rearrangements have
no effect on gene order and more of the conserved segments identified will contain
no genes. At the same time, many of the conserved segments identified in the
recent gene maps contain a number of genes in a relatively small stretch of
sequence, too short to even show up as a conserved segment in the sequence-
based analyses (cf [5,51]). Thus the congruence apparent between large conserved
segments in the genome sequence and the gene map data breaks down as we zoom
down to smaller segments, with small segments of conserved sequence containing
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resolution of autosomal segment-sharing inter- intra-
comparative map segments chromosome pairs chromosomal∑

n(i)
∑

ci
∑

t
∑

u
100 Kb [52] 350 109 130 198
300 Kb [8] 370 107 128 220
1 Mb [14] 270 100 117 131
2K genes [47] 192 99 114 59
12K genes [7],NCBI 213 113/120 137/149 64/41

Table 1.2 Inference of inter- and intra-chromosomal rearrangements based on
number of conserved segments and number of segment-sharing autosome pairs
in the two genomes. Sources: [52] based on UCSC Genome Browser, [8, 14] on
anchor-sequence constructions, [47] on outdated human mouse homology data
cited in [40], [7] on MGI 2004 Oxford grid cells containing at least three/two
genes for the ci, and on NCBI Human Mouse Homology Map for the n(i).

no genes and the small segments containing genes passing beneath the radar of
sequence-based analyses.

Many of the single-gene orthologies on comparative maps are undoubtedly
due to paralogy and other errors in assignment, but a significant proportion
will certainly prove to be valid, opening questions about the nature of the pro-
cesses creating them. The repertoire of inversions, reciprocal translocations and
Robertsonian translocations popular with modelers may have to be expanded
to include such processes as transpositions or jump translocations, within and
between chromosomes and non-tandem duplication processes, with or without
loss of functionality.

1.6 Rearrangement algorithms

We can derive much more detailed inferences about the processes responsible for
a particular comparative map if we are willing to work within the framework of
a sufficiently restrictive model, though we must then be vigilant that our results
are really consequences of the data rather than simply artifacts of the model
restrictions. The types of chromosomal rearrangement most often modeled are
inversions, reciprocal translocations and fissions and fusions, including Robert-
sonian translocations. The basic aim is to efficiently transform a given genome,
represented as a set of idealized disjoint chromosomes made up of an ordered
subset of genes, into another given genome made up of the same genes but dif-
ferently partitioned among chromosomes, in a minimum number of steps d. The
algorithm outputs d and a sequence of d rearrangements that carry out the de-
sired transformation. The literature on this problem area (highlighted by the
Hannenhalli-Pevzner discoveries [17–19] and reviewed in [37]) is extensive and
has seen much recent progress (cf [50,58,29,49] and chapters in this volume), and
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we will not go into details here. Some points will be important in the ensuing
sections:

• Each reciprocal translocation or inversion increases or decreases the num-
ber of segments by at most two; i.e., it adds or removes at most two break-
points between adjacent segments. (Other rearrangements, such as trans-
positions or “jump translocations” can change the number of segments by
three, but these are thought to be rare.)

• In the Hannenhalli-Pevzner algorithms and their improvements, virtually
all moves decrease the number of segments, i.e., decrease the number of
breakpoints, by two or one.

• In general, there are a large number of optimal solutions.
• The algorithms consider all operations to have the same cost, indepen-

dent of whether they are inversions or translocations, and independent of
how many genes are in their scope. This is essential to the algorithms. If
we wish to modify the problems or to change the objective function, the
mathematical basis of the algorithm is lost.

We will return to other aspects of these algorithms in Section 1.8.

1.7 Loss of signal

To what extent does the sequence of rearrangements reconstructed by rearrange-
ment algorithms actually reflect the true evolutionary history? It is well-known
that past a threshold of θn, where n is the number of genes and θ is in the range
of 1/3 to 2/3, the inferred value of d tends to underestimate the number of events
that actually occurred [22–24].

Whether any signal is conserved as to the actual individual events themselves,
and which ones, is even more problematic.

Lefebvre et al. [26] carried out the following test: For a genome of size n =
1000, they generated u inversions of size l at random (for l =5, 10, 15, 20, 50, 100,
200), and then reconstructed the optimal inversion history, for a range of values
of u. Typically, for small enough values of u, the algorithm reconstructed the true
inversion history, although inversions that do not overlap may be reconstructed in
any order. Above a certain value of u, however, depending on l, the reconstructed
inversions manifest a range of sizes, as illustrated in Fig. 1.3, reflecting the ability
of the algorithm to find alternative solutions, and eventually solutions where
d < u, with the concomitant decay of the evolutionary signal.

For each l, they then calculated
sl = max(u|reconstruction has at most 95% error)
sl = min(u|reconstruction has at least 5% error)

where any inversion having length different from l is considered to be an error.
Fig. 1.4 plots s and s as a function of l and shows how quickly the detailed
evolutionary signal decays for large inversions. Only for very small inversions is
a clear signal preserved long after longer ones have been completely obscured.
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Fig. 1.3. Frequency of inversion sizes inferred by the algorithm for random
genomes obtained by performing u inversions of size l = 50. Top: u = 80.
Bottom: u = 200.

Fig. 1.4. Solid line: values of s. Dotted line: values of s.
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1.8 From gene order to genomic sequence
Gene order rearrangement algorithms can handle many thousands of genes in
reasonable computing time. Faced with large nuclear genome sequences, partic-
ularly from the higher eukaryotes, however, uncertainties in global alignments,
lack of complete consensus inventories of genes and the difficulties of distinguish-
ing among paralogs widely distributed across the genome, constitute apparently
insurmountable impediments to the direct application of the algorithms.

1.8.1 The Pevzner-Tesler approach
In comparing drafts of the human and mouse genomes , Pevzner and colleagues
[32–34, 8] adopt an ingenious stratagem to leap-frog the global alignment, gene
finding and ortholog identification steps. In their first study, on the human-mouse
comparison, they analyzed almost 600,000 relatively short (average length 340
bp) anchors of highly aligned sequence fragments as a starting point for building
blocks of conserved synteny, and then amalgamated neighboring sub-blocks using
a variety of criteria to avoid disruptions due to “microrearrangements” less than
1Mb. This procedure inferred a set of 281 blocks larger than 1 Mb, which is
basically what is reported in [14] and [8]. (The latter also improve the resolution
down to 300 Kb – see Table 1.2.) They then used the order of these blocks on
the 23 chromosomes as input to a gene order rearrangement algorithms in order
to reconstruct optimal sequences of d inversions and translocations to account
for the divergent arrangements of the two genomes.

1.8.2 The re-use statistic r.
One of the key results reported by Pevzner and Tesler pertains to the “re-use”
of the breakpoints between the b′ syntenic blocks on the c chromosomes used as
input to their rearrangement algorithms. Basic to the combinatorial optimization
approach to inferring genome rearrangements are the bounds b

2 ≤ d ≤ b, where
b = b′−c. (This type of bound was first found in 1982 [57].) We define breakpoint
re-use as r = 2d

b . Then
1 ≤ r ≤ 2.

The lower value r = 1 is characteristic of an evolutionary trajectory where each
inversion or translocation breaks the genome at two sites specific to that par-
ticular rearrangement; no other inversion or translocation breaks the genome at
either of these sites. High values of r, near r = 2, are characteristic of evolution-
ary histories where each rearrangement after the first one breaks the genome at
one new site and at one previously broken site. In their comparison of the hu-
man and mouse genomes, Pevzner’s group find that r is somewhere between 1.6
and 1.9, depending on the resolution of their syntenic block construction and on
whether they discard telomeric blocks or not, and argue that this is evidence that
evolutionary breakpoints are concentrated in fragile regions covering a relatively
small proportion of the genome.

Now it is easily shown that for random permutations of size n, the expected
value of b is very close to n [39], and it is an observed property [23] of such
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permutations that the number of inversions needed to sort them (d) is also very
close to n, and thus breakpoint re-use is close to 2. Without getting into the
substantive claim about fragile regions persisting across the entire mammalian
class, for which the evidence is controversial [25, 11, 43, 36], we may ask what
breakpoint re-use in empirical genome comparison really measures: a bonafide
tendency for repeated use of breakpoints or simply the degree of randomness of
one genome with respect to the other at the level of synteny blocks.

1.8.3 Simulating rearrangement inference with a block-size threshold

To see whether a high inferred rate of breakpoint re-use necessarily reflects a real
phenomenon or is an artifact of methodology, Sankoff and Trinh [44] generated
model genomes with NO breakpoint re-use (r = 1), then mimicked the Pevzner-
Tesler imposition of a block-size threshold by discarding random parts of the
genome before applying the Hannenhalli-Pevzner algorithm to the remainder of
the genome to infer d and hence r.

Each genome consisted of a permutation of length n = 1000 or n = 100 terms
generated by applying d “two-breakpoint” inversions to the identity permutation
(12 · · ·n). A two-breakpoint inversion is one that disrupts two hitherto intact
adjacencies in the starting (i.e. identity) permutation. At each step, the two
breakpoints were chosen at random among the remaining original adjacencies.
This represents the extreme hypothesis of no breakpoint re-use at all during
evolution, which is not unreasonable given the 3 x 109 distinct dinucleotide sites
available in a mammalian genome.

Of course, the terms are just abstract elements in the permutation and have
no associated size, and indeed the Hannenhalli-Pevzner procedures do not involve
any concept of block size. Thus, one way to imitate the effect of imposing a
block-size threshold involves simply deleting a fixed proportion of the terms at
random, the same terms from both the starting and derived genomes, relabeling
the remaining terms according to their order in the starting (identity) genome,
and applying the Hannenhalli-Pevzner algorithm.

It can be shown that before any deletions, the Hannenhalli-Pevzner algorithm
will recover exactly d inversions. At each step it will find a configuration of form
· · · gh |− (i−1) · · ·− (h+1) | ij · · · and will “undo” the inversion between h and
i, removing two breakpoints. There being b = 2d breakpoints, breakpoint re-use
is 1.0.

What happens as terms are deleted? Suppose j 6= i+1 in the above example,
and i is deleted. Then the two-breakpoint inversion from −(i − 1) to −(h + 1)
is no longer available to undo. An inversion that erases the breakpoint between
h and −(i − 1) will not eliminate a second breakpoint. So while the distance d
drops by 1, the number of breakpoints b also only drops by 1, and r increases.

The probability that one, two, or more two-breakpoint inversions are “spoiled’
in this way depends on the number of terms deleted.

Figure 1.5 shows how r increases with the proportion of terms deleted, for
different values of d, for n = 100 and n = 1000.
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Fig. 1.5. Effect of deleting random terms on breakpoint re-use, as a function
of proportion of terms deleted, for various levels of rearrangement of the
genome.

Note

• r increases more rapidly for more highly rearranged genomes.

• the initial rate of increase of r depends only on d/n

• the increase in r levels off well below r = 2 and then descends sharply. The
maximum level attained increases with n.

The first of these is readily explained. In more rearranged permutations, the
deletion of term i is more likely to cause the configuration change described
above, i.e. · · · gh | − (i− 1) · · · − (h + 1) | ij · · ·, simply because it is more likely
that j 6= i + 1.

The third observation is also easily understood. For large n, the re-use rate r
approaches 2 for random permutations. As n decreases, however, expected re-use
drops as indicated in Table 1.3. As more and more terms are dropped from a
permutation, it loses its “structure”, i.e., the pairs of breakpoints involved in the
original inversions are wholly or partially deleted, and the remaining permutation
becomes essentially random. We may consider that after a curve in Fig. 1.5
attains its maximum, it is entering into the “noisy” region where the historical
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n r
5 1.53

25 1.83
50 1.90

100 1.94
250 1.97

Table 1.3 Expected re-use for random permutations as a function of n. Esti-
mated from samples of size 500.

signal becomes thoroughly hidden.

1.8.4 A model for breakpoint re-use

This section explains the second observation above about the pertinence of d/n
for the initial shape of the curves. Suppose a genome G has b breakpoints with
respect to 12 · · ·n and the inversion distance is d = d2 + d1, where d1 and d2

represent the number of one-breakpoint inversions and two-breakpoint inversions
required to sort G optimally. Then 2d2 + d1 = b.

Suppose now that we delete one gene i at random and relabel genes j =
i+1, · · · , n as j = i, · · · , n− 1, respectively. The number of breakpoints changes,
and quantities b, d1, d2 and d can change only if the original gene i was flanked
by two breakpoints. The probability of this event is b(b−1)/n(n−1). The various
configurations in which the two breakpoints may be involved, their probabilities
and the effects of deleting i on d1 and d2 (b always decreases by 1, except in case
21 where it decreases by 2) are summarized in Table 1.4 and discussed in some
detail in [44].

effect on
Case configuration probability d1 d2

11 −(i + 1) | i | j d1
b(b−1)

-1 0

12 g | − (i − 1) · · · · · ·h | i | j · · · − (i + 1) | k
d1(d1−2)
4b(b−1)

-1 0

g | − (i − 1) · · ·h | i | − (k − 1) · · · j | k
d1(d1−2)
2b(b−1)

-1 0

g | h · · · − (g + 1) | i | − (k − 1) · · · j | k
d1(d1−2)
4b(b−1)

-1 0

21 −(i + 1) | i | − (i − 1) 1
d2−1

2d2(2d2−1)
b(b−1)

0 -1

22 g | − (i − 1) · · · − (g + 1) | i | − (k − 1) · · · − (i + 1) | k d2−2
d2−1

2d2(2d2−1)
b(b−1)

+1 -1

3 g | − (i − 1) · · · − (g + 1) | i | − (k − 1) · · · j | k d1d2
b(b−1)

+1 -1

g | − (i − 1) · · · − (g + 1) | i | j · · · − (i + 1) | k d1d2
b(b−1)

+1 -1

Table 1.4 Probabilities and usual effects of discarding gene i in various con-
figurations, given it is flanked by two breakpoints. Probabilities include those
of inverted or nested versions (not listed) of configurations shown. Special
cases of configurations with order O(1/n) probabilities not distinguished, e.g.
g | − (i− 1) · · ·h | i | h + 1 · · · − (i + 1) | k.
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These considerations are, of course only valid insofar as the inversions asso-
ciated with the endpoints are directly available in G (in fact, some are set up by
other inversions later, during the sorting of G), but they give us an idea of the
dynamics of the situation and motivate the deterministic model:

d2(t + 1) = d2(t) +
b(t)(b(t)− 1)

(n− t)(n− t− 1)
(−p21(t)− p22(t)− p3(t))

= d2(t)−
2d2(2d2 − 1) + 4d1d2

(n− t)(n− t− 1)
,

d1(t + 1) = d1(t) +
b(t)(b(t)− 1)

(n− t)(n− t− 1)
(p22(t) + p3(t)−max[0, p1(t)])

= d1(t) +
d2−2
d2−12d2(2d2 − 1) + 4d1d2 −max[0, d1(d1 − 1)]

(n− t)(n− t− 1)
.

b(t + 1) = 2d2(t + 1) + d1(t + 1),

where t ranges from 0 to n and with initial conditions b(0) = 2d2(0) = 2d(0)
and d1(0) = 0. (N.B. All the d terms on the RHS of the recurrence should be
understood as indexed by t.)

Figure 1.6 shows how the recurrence models closely the average evolution of
r as the number of terms randomly deleted increases, particularly at the outset,
before there are large numbers of one-breakpoint inversions in the Hannenhalli-
Pevzner reconstruction. As d1 increases, the model renders less well the changing
structure of optimal reconstructions. Finally, the loss of historical signal in the
noisy zone for the reconstructions is not built into the model, which thus attains
r = 2 as the last terms of the permutation are deleted rather than the values in
Table 1.3.

Let θ = t/n represent the proportion of terms deleted. Formally, since r =
2d/b, and d is constant in a neighbourhood of t = 0, while db/dt ≈ −(b/n)2,
we can write that dr/dθ|θ=0 = 2d/n. This explains the coincidence between the
curves for n = 100 and n = 1000 in Fig. 1.5.

1.8.5 A measure of noise?

After investigating the effect of threshold size on r, albeit indirectly by varying
the rate of random deletion of blocks, Sankoff and Trinh [44] carried out simula-
tions that showed how amalgamations exacerbate the re-use artifact caused by
deleting small blocks.

Though Pevzner and Tesler used r to infer relative susceptibility of genomic
regions to rearrangement, the simulations described in this section show that it
serves rather to measure the loss of signal of evolutionary history, due to the

Fig. 1.6. Plot of r predicted by the recurrence compared to true value estimated
by simulation.
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imposition of thresholds for retaining syntenic blocks and for repairing microre-
arrangements. Indeed, breakpoint re-use of the same magnitude as found by
Pevzner’s group may very well be artifacts of the use of thresholds in a context
where NO re-use actually occurred. Indeed, while this may not have been their
goal, Pevzner and Tesler have invented a statistic that is a measure of the noise
affecting a genomic rearrangement process at the sequence level. Given some in-
formation about the parameters of rearrangement, the number of blocks and the
size of the thresholds, the re-use rate tells us whether we can have confidence in
evolutionary signal reconstructed, whether it must be considered largely random,
or whether we are in the “twilight” zone.

1.9 Between the blocks

The syntenic blocks are reconstructed by algorithms that bridge the gaps between
neighbouring well-aligned regions on both genomes, such as the Pevzner-Tesler
method described in Section 1.8.1 above or the approach used in the UCSC
Genome Browser [25].

Generally the two syntenic blocks on either side of a breakpoint on, say, a
human chromosome do not abut directly, but are rather separated by a short
region where there is little similarity with the mouse genome. The obverse of
analyzing the order of the reconstructed syntenic blocks as in Section 1.8 is the
investigation of these regions, the largely unaligned stretches of genomic DNA
left over once the blocks are identified.

Pevzner and Tesler interpret the lack of sustained human-mouse similarity
in the regions containing breakpoints as suggestive of the “fragility” of these
regions, their susceptibility to frequent rearrangement, in line with their claimed
inference of breakpoint re-use. Previous documentation of evolutionary subtelom-
eric translocational hotspots and pericentromeric duplication and/or transposi-
tional hotspots [11] can be adduced to support the strong hypothesis that po-
tential breakpoints are largely restricted to a limited number (e.g. < 500) of
very small regions in the genome, and that this regional susceptibility is con-
served over considerable evolutionary time scales. Further lines of evidence for
this viewpoint include the high rates of recurrence of certain breakpoints in the
clinical study of tumor cell karyotypes, and the existence of certain physically
fragile regions in human chromosomes under laboratory conditions.

But how can we reconcile the apparently contradictory notions of evolu-
tionarily conserved fragility of breakpoint regions and the lack of human-mouse
similarity in these regions? If conserved fragility is based on some substantial
primary sequence signal, why is this not picked up by the alignment protocol
and how is it conserved if the region is being churned by rearrangements? There
are, of course, many possible answers: the signals may be too short, they may be
removed by repeat-masking prior to the reconstruction of the syntenic blocks,
they may involve conserved secondary but not primary structures, they may in-
volve GC-poorness or other gross sequence characteristics, or they may even be
determined by unknown epigenetic considerations. There is no evidence, how-
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Fig. 1.7. Effect of meiotic non-alignment of regions surrounding breakpoints in

heterokaryotypes.

Fig. 1.8. Hypothetical human chromosome with breakpoint region (space) con-
taining three types of small fragment. Shading of syntenic blocks B1-B5 and
fragments keyed to aligned portions of mouse chromosomes. a = archipelago,
c = compatriot, f = foreigner.

ever, for any of these nor, as we argued in Section 1.8, for the contention that
the breakpoint regions contain multiple breakpoints.

This notion of “fragile regions” or a priori proclivity for breakage as inter-
pretation of the evidence is rejected in [52], where a combination of the following
three factors is suggested to explain the limited amounts of similarity in the
neighborhood of breakpoints.

• The algorithms [32, 25] that reconstruct the syntenic blocks bridge gaps
as long as appropriate similarity exists at both ends of the gap. A rear-
rangement event with one breakpoint within a gap destroys the match
between the homologies at each end. This effect would show up only after
the breakage event.

• For a rearrangement to become established in a population, the process
of meiosis has to tolerate the coexistence of different rearrangement hap-
lotypes through many generations of heterokaryotypy. The mechanism of
this tolerance may be seen in quadrivalent meiotic figures (in the case of
reciprocal translocations), as depicted in Fig. 1.7, and in looped figures
(in the case of inversions). Though there does not appear to be any direct
molecular cytogenetic evidence, it is hypothesized that there is an increase
of aberrant processes, such as recombination errors, deletion, duplication
or retroposition in the necessarily unapposed chromosomal regions in the
immediate vicinity of breakpoints in such figures, during the heterokary-
otypy period before the rearrangement becomes fixed. Note that this pro-
cess is operative only after the rearrangement event, and is consistent with
breakpoints occurring randomly over virtually the entire genome and not
confined to a small number of regions.

• To the extent that breakage occurs disproportionately in intergenic regions,
these tend to undergo more rapid sequence evolution than regions contain-
ing exons and introns. This is not the same as the fragile regions hypoth-
esis: the number of intergenic regions is almost two order of magnitudes
greater than the supposed number of fragile regions, and the intergenic
regions cover most of the genome! Rather, accelerated intergenic sequence
evolution would compound, after breakage, the effects of the preceding
two paragraphs. Note that in general the breakpoint regions contain many
genes [25] and, depending on the criteria used to delimit the regions, parts
of genes.
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Fig. 1.9. Top: Length distribution for fragment categories. Bottom: Number
of chromosomes for which the null hypotheses of identical size fragments is
rejected or accepted.

1.9.1 Fragments

The largely unaligned region between two syntenic blocks on a human chro-
mosome usually contains a number of smaller regions (or fragments) that are
aligned with regions on various mouse chromosomes . As depicted in Fig. 1.8,
these fragments fall into three categories:

• If a fragment is aligned with a region on the same mouse chromosome as
one of the two adjacent syntenic blocks on the left or right of the space, it
is said to be in the archipelago.

• Fragments aligned with regions on other mouse autosomes sharing syntenic
blocks with the same human chromosome are called compatriots. (Recall
that the X chromosome generally does not participate in inter-chromosomal
exchanges.)

• Fragments aligned with regions on mouse chromosomes, including X, shar-
ing no syntenic blocks with the same human chromosome, are foreigners.

Trinh et al. [52] undertook a statistical assessment of the three types in the hopes
of revealing the formative processes of the breakpoint regions.

Based on the construction in the UCSC Genome Browser comparison of the
mouse and human genomes, and using a 100Kb threshold for the minimum size
of a syntenic block, they extracted 320 inter-block spaces on the human genome
for analysis, excluding pericentromeric spaces subject to repetitive segmental
duplication and/or transposition [3]. Their median length was 120 Kb, about
the same as the shortest blocks. For about half the spaces, the two adjacent
syntenic blocks were from different mouse chromosomes. The spaces contained
12930 smaller aligned fragments as identified by the browser, and these were
labeled as archipelago (N=4139), compatriot (N=2706) or foreigner (N=6085) .

The archipelago fragments are considerably longer than the compatriot and
foreigner fragments as can be seen from the distributions of fragment length in
Fig. 1.9. The median length of the archipelago fragments is twice as large as
either of the other two in most chromosomes . The disparity prevails throughout
the genome as can be seen in the plot of the number of chromosomes for which a
one-tailed Kolmogorov-Smirnov test rejects the null hypothesis that the different
types of fragment have the same distribution of lengths.

Figure 1.9 also shows that the compatriot fragments are systematically longer
than the foreigner ones, though the difference is less marked than that between
either of these categories and the archipelago. Fourteen of the 18 chromosomes
for which there are sufficient data have longer mean fragment size for compatriots
than foreigners, and eight of these are significantly so at the 5 % level.

Trinh et al. [52] also showed that :



BETWEEN THE BLOCKS 19

• Archipelago fragments tended to be much more frequent in an inter-block
space than compatriot fragments, in proportion to the number of different
mouse chromosomes in which the two types could originate. In turn, com-
patriots tended to be much more frequent than foreigners, again relative to
the number of different mouse chromosomes in which the two types could
originate.

• The proportion of the inter-block space covered by archipelago fragments
is much greater than that of the compatriots, which in turn is greater than
that of the foreigners.

• The archipelago fragments in spaces defined by blocks from two different
mouse chromosomes, though somewhat interspersed, tended to segregate
towards the corresponding block.

• The archipelago fragments tend to correspond to regions in the mouse
chromosome close to the homolog of the adjacent block. The compatriot
fragments tend to correspond to regions in the mouse chromosome close to
the homolog of one of the blocks on the same human chromosome.

These observations about the different kinds of fragments suggest that they
derive from at least three separate types of process. All or most of the foreigners
but a smaller proportion of the compatriots and a much smaller proportion of
the archipelago, probably come from some common processes such as retroposi-
tion of mRNA, or small jumping translocation or transposition events originat-
ing randomly across the genome and correlating roughly with chromosome size.
Compatriots represent either a greater propensity for retroposition to the same
chromosome originating, due to geometrical considerations (mRNA is more con-
centrated around the chromosome from which it is transcribed) or, in some lesser
proportion, from some intrachromosomal shuffling process, such as inversion or
transposition. Finally, the larger archipelago blocks seem to be hived off the large
syntenic blocks on either side, and are the results, in some proportion, of two
types of process. One is the residual similarity exceeding whatever thresholds
are required by the alignment algorithms. These islands of similarity “peeking
through” the noise may be either a natural consequence of the variable degree of
similarity across all regions of the genome, or indicate the sporadic way the algo-
rithms fail near breakpoints, or both. Second, these fragments may be chunks of
the two surrounding syntenic blocks that have been thrown from near the ends
of these blocks into the space by the same processes of local rearrangement that
affect the interior of the blocks. That the archipelago fragments corresponding
to two syntenic blocks are partially interspersed is evidence that such rearrange-
ment continues to occur post-rearrangement, and that they are not solely the
residues of decaying measures of similarity .

One process that is not invoked in explaining these statistics is the repeated
use of the same breakpoints by several large-scale genomic rearrangements. The
archipelago fragments only attest to local rearrangements, and the numerous
small compatriot and foreigner fragments, including many fragments of X chro-
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mosome origin, do not seem like the residue of repeated large-scale rearrange-
ments.

1.10 Conclusions
Genome rearrangement analysis has not scaled up directly to genomic sequences,
not because of any computational difficulty, but because this new information
is not as neat as the gene order data of organelles. Whatever the loss of evo-
lutionary signal from divergent organellar or prokaryotic genomes, this problem
is compounded in nuclear genomes by the difficulties of gene finding and or-
tholog identification at the gene level, and the lack of congruence of genomic
sequence rearrangement and gene order rearrangement. Whereas the former in-
volves movement of material that may not involve any genes, the latter may
sometimes operate on gene-containing fragments too short to be picked up by
syntenic block construction algorithms .

Genome sequence data has thus proved to be more of a problem for compar-
ative genomics than a solution to old problems.
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