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A b s t r a c t .  During evolution, chromosomM rearrangements, such as re- 
ciprocal  translocation, transposition and inversion, disrupt gene content 
and gene order on chromosomes. We discuss algorithmic and statistical 
approaches to the analysis of comparative genomic data. In a phyloge- 
netic context, a combined approach is suggested, leading to the median 
problem for breakpoints. We solve this problem first for the case where 
all genomes have the same gene content, and then for the general case. 

1 I n t r o d u c t i o n  

During biological evolution, inter- and intrachromosomal exchanges of chromo- 
somal fragments disrupt the order of genes on a chromosome and, for multichro- 
mosomal genomes, the partition of genes among these chromosomes. 

When comparing two evolutionarily diverging species, any (maximal) con- 
tiguous region of the genome in which gene content and order have been con- 
served in both species is called a conserved segment. Between any two adjacent 
conserved segments is a breakpoint. The number of conserved segments increases 
as they are disrupted by new events, so that they tend to become shorter over 
time. The number of chromosomal segments conserved during the divergence of 
two species, or equivalently, the number of breakpoints, can be used as a rough 
measure of their genomic distance. 

Two approaches, the algorithmic and the statistical, have been taken to the 
reconstruction of genomic history based on the comparison of chromosomal gene 
content and order in two or more genomes. The first attempts to infer a most eco- 
nomicM sequence of rearrangement events to account for the differences among 
the genomes, based only on the breakpoints, and neglects the contents of con- 
served segments. The second approach ignores the details of rearrangement his- 
tory and assumes that a random model (the Nadeau-Taylor model) accounts for 
the differences in chromosomal gene content and order. In this paper, we discuss 
the strengths and weaknesses of the two approaches. 

In the phylogenetic context, a compromise approach can be adopted, algo- 
rithmic, but not attempting to infer precise details of hypothesized evolutionary 
events. This leads to a new, tractable, problem, the median problem for break- 
points. We give a solution to the version of this problem where all genomes have 
the same gene content, and extend it to the case where the median and other 
genomes involved may have partially different gene sets. 
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2 T h e  a l g o r i t h m i c  a p p r o a c h  

The algorithmic study of comparative genomics has focused on inferring the most 
economical explanation for observed differences in gene orders in two or more 
genomes in terms of a limited number of rearrangement processes. For single- 
chromosome genomes, this has been formulated as the problem of calculating an 
edit distance between two linear orders on the same set of objects, representing 
the ordering of homologous genes in two genomes. In the most realistic version 
of the problem, a sign (plus or minus) is associated with each object in the 
linear order, representing the direction of transcription, or strandedness, of the 
corresponding gene. The elementary edit operations may include one or more of: 
1) inversion, or reversal, of any number of consecutive terms in the ordered 
set, which, in the case of signed orders, also reverses the polarity of each term 
within the scope of the inversion. Kececioglu and Sankoff [13] considered the 
problem of computing the minimum reversal distance between two given per- 
mutations in the unsigned case, including approximation algorithms and an ex- 
act algorithm feasible for moderately long permutations. Bafna and Pevzner [1] 
gave improved approximation algorithms for this problem. Recently, Caprara [4] 
showed this problem to be NP-complete. Kececioglu and Sankoff [12] also found 
tight lower and upper bounds for the signed case and implemented an exact 
algorithm which worked rapidly for long permutations. Indeed, Hannenhalli and 
Pevzner [8] showed in 1995 that the signed problem is only of polynomial com- 
plexity, and an improved polynomial algorithm was given by Kaplan, Shamir 
and Tarjan [10]. 
2) transposition of any number of consecutive terms from their position in the 
order to a new position between any other pair of consecutive terms. This may 
or may not also involve an inversion. Computation of the transposition distance 
between two permutations was considered by Bafna and Pevzner [2]. Sankoff et 
aI. [21, 18, 3] implemented and applied heuristics to compute an edit distance 
which is a weighted combination of inversions, transpositions and deletions. 

In addition, for multi-chromosome genomes, a major role is played by: 
3) reciprocal transtocation. Kececioglu and Ravi [11] began the investigation of 
translocation distances, and Hannenhalli [7] has shown that a formulation is of 
polynomial complexity. A relaxed form of translocation distance was proposed 
by Ferretti et al.[6] and the complexity of its calculation was shown to be NP- 
complete by DasGupta et al. [5]. 

2.1 Shor t comings  of  the  a lgor i thmic app roach  

It would seem to be an advantage of the algorithmic approach that it actually 
constructs an optimizing series of events that accounts for the rearrangement of 
one genome with respect to another. There are two problems with this, however. 
One is the non-uniqueness of the solution, especially when all rearrangement 
events are weighted equally - one event equals one unit of the objective function 
being minimized - or even if the weights are integral multiples of some common 
factor. Though this problem is reduced with suitable event weights, a serious 
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measure of arbitrariness is thereby introduced. Some progress has recently been 
made in estimating appropriate weights empirically [18, 3]. 

The advantage of reconstructing a feasible history is thus diminished, since 
this history likely has no particular status with respect to many other equally 
parsimonious solutions. This problem is somewhat attenuated in the context of 
the median problem, to be discussed later. A more serious problem with re- 
constructed solutions is that when the number of steps approaches a certain 
proportion of the number of breal~points, this number is almost certainly a se- 
rious underestimate [13]. Again, having a reconstructed history is a dubious 
advantage, since it inevitably contains some wrong steps and omits even more 
true events. 

Finally, the algorithmic approach is very sensitive to errors and other small 
changes in the data. These are especially numerous when gene order has been 
determined by mapping techniques other than complete sequencing [20]. 

3 T h e  s t a t i s t i c a l  a p p r o a c h  

Our formulation of the Nadeau-Taylor model of genomic divergence assumes that 
each reciprocal translocation breaks chromosomes at random points on two ran- 
domly chosen chromosomes. As a consequence when we compare two divergent 
genomes, the endpoints of the conserved segments making up each chromosome 
are uniformly and independently distributed along its length (spatial homogene- 
ity of breakpoints). We also assume that which genes of a genome are discovered 
and mapped first does not depend on their position on the chromosome (spatial 
homogeneity of gene distribution), nor on their proximity to each other (inde- 
pendence of map positions). 

In trying to count the number of conserved segments for the quantification 
of evolution, we must deal with underestimation due to conserved segments in 
which genes have not yet been identified in one or both species. This is par- 
ticularly important if there are relatively few genes common to the data sets 
for a pair of species, so that many or most of the conserved segments are not 
represented in the comparison, and genomic distance may be severely underesti- 
mated. Nadeau and Taylor [16] in 1984 could only treat 13 segments out of the 
100-200 now known to exist. 

We model the genome as a single long unit broken at n random break- 
points into n + 1 segments, within each of which gene order has been con- 
served with reference to some other genome. (Little is lost in not distinguishing 
between breakpoints and concatenation boundaries separating two successive 
chromosomes[19].) 

It is remarkable that to estimate n from m and the number of segments nr 

observed to contain r genes, for r = i, 2..., only the number of non-empty 

segments a = ~r>0  nr is important [17]. 

T h e o r e m  1. The variable a is a sufficient statistic for the estimation of n. 
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3 .1  E s t i m a t i n g  n f r o m  a 

To estimate n, we study P(a, m, n), the probability of observing a non-empty 
segments if there are m genes and n breakpoints. Combinatorial arguments give 

p(a,m,n)= (~--1)  (n+a 1) 

After observing m and a it is an easy matter to find the value of n which 
maximizes P, i.e. the maximum likelihood estimate. 

3.2 Weaknesses  of the  s ta t is t ical  approach  

One weakness of the statistical approach is that it does not estimate a specific 
series of events, although we have discussed how this advantage of the algorithmic 
approach is dubious. The number of breakpoints (or conserved segments) cannot 
be deterministically converted into a number of events, since different types of 
rearrangement produce different numbers of' breakpoints, and even a single type 
of event does not always produce the same number of breakpoints. 

Perhaps the greatest potential weakness of this approach is that it depends 
on the applicability of a particular probabilistic model. This is a temporary 
problem, however, in that it gives rise to further research on better models [14]. 

4 The median  problem 

For phylogenetic purposes, it is useful to solve the following sort of problem: 
Given a distance or dissimilarity d, three genomes A, B and C, and a set of 
genes E, we want to find a genome S containing all the genes in Z such that 

d(S, A) + d(S, B) + d(S, C) 

is minimized. How a solution to this problem can be the key to solving phyloge- 
netic problems involving many genomes is discussed in [22, 6]. 

The set ~ may be determined by the phylogenetic problem under study, or 
may be defined by the analyst. For example, if A, B and C all contain the same 
set of genes, then it is natural to use this set for Z. Another example is drawn 
from organelle evolution, where genes tend to be lost from the genome and not 
re-inserted. Then if A is ancestral to both B and C, the set Z will be the union 
of the set of genes in B and the set of genes in C. Stitl another possibility, where 
the direction of evolution is less clear, is to include in Z just those genes that  
are in at least two of A, B and C. 
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genomeA 1 t 4 5 1 3 6  

f f 
genome A, reduced 1 I 45 t 3 

genome B, reduced I 13 I 45  

A F, 
genomeB 2 13 7 45 

Fig. 1. Defining breakpoints for (circular) genomes with different gene contents. 
Position of breakpoints (vertical strokes) found first in reduced genomes with 
identical gene sets. This unambiguously determines breakpoints between 1 and 
4 and between 5 and 3 in genome A. Breakpoint between 5 and 1 in genome B 
is "hidden" by gene 2; that between 3 and 4 is hidden by gene 7. 

4.1 I3reakpoints  

Consider two genomes A = a l . . .  an and B = b l . . .  bn on the same set of genes 
{gl,-. .  ,gn}. We say ai and ai+l are adjacent in A (and an and al are adjacent 
as well in circular genomes). If two genes g and h are adjacent in A but not in 
B, they determine a breakpoint in A. The number of breakpoints in A is clearly 
equal to the number of breakpoints in B. 

For two genomes whose gene sets are not identical, to calculate the break- 
points, we first remove all genes that are present in only one of the genomes. We 
then find the breakpoints for the reduced genomes, now of identical composition. 
The positions of the breakpoints are well-defined in the reduced genomes. In the 
full genomes, there is a breakpoint between a~ and ai+l only if this is a break- 
point for the reduced genome. If, as in Figure 1, there is a breakpoint between 
ai and aj in the reduced genome, where j ~ i + 1, then there is a corresponding 
breakpoint in the full genon~m, but its position is ambiguous. We call it a hidden 
breakpoint; it is somewhere between a~ and aj, which are not adjacent. 

4.2 The  med ian  prob lem for a fixed gene set  .~ 

Now define d to be the number of breakpoints derived from the comparison of 
two genomes containing the same genes ~. The median problem becomes one of 
finding the genome S on ~U that determines the fewest total breakpoints between 
itself and the three genomes A.B  and C. 

In contrast to other genomic distances, this problem seems relatively tractable, 
although its computational complexity remains to be determined. We proceed 
by reduction to the Traveling Salesman Problem (TSP). 

It will be convenient to describe genomes in graph-theoretical terms. The 
genes will be represented by the vertices of the graph and adjacency of two 
genes will be indicated by the existence of a corresponding edge in the graph. 
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Thus, only graphs consisting of a single complete cycle of the vertices represent 
(circular) genomes. 

We first define G to be the complete graph whose vertices are the elements 
of ~U. For each edge 3h in E(G), let u(gh) be the number of times g and h are 
adjacent in the three genomes. Set w(gh) = 3-u(gh). Then the solution to TSP 
on (G, w) traces out an optimal genome S on 5J, since if g and h are adjacent 
in S, but not in A, for example, then they form a breakpoint in S. 

4.3 A lower  b o u n d  

To solve this restricted form of TSP, we resort to a branch-and-bound algorithm 
based on the following lower bound: 

Let thee@e-pool P c_ E(G), be disjoint from the fragment F c_ E(G,) and 
let score = ~-~ghEF w(gh). Define a(g), the availability of g e V(G), to be 2, 1 
or 0, depending on whether g is incident to zero, one, or more than one edge in 
F, respectively. Let #(g) be the sum of the a(g) smallest weights of edges in P 
incident to g. (#(9) is undefined if there are less than a(g) such edges.) 

If there is a TSP solution cycle S of weight Ws which includes all the edges 
in the fragment F and some additional edges drawn from the edge-pool P,  let 
u(g) be the sum of the weights of the exactly a(g) edges of S in P incident to g. 
(In this case #(g) is always defined.) Clearly #(9) <- ~'(g)- 

Now, 

Ws = score + ) :   (3h) 
ghEE(S)~P 

1 =score+   (3h) 
glghEE(S)AP 

since each edge in E(S) A P is counted twice in the sum. Thus 

t 

glghEE(S)AP 

Defining 
1 

L(P) = Z 
glghEE(S)AP 

1 
score + L(P) < score + ~ ~ ~'(9) = Ws. 

glghEE(S)NP 

We use L(P) as a lower bound in the branch-and-bound algorithm in Section 
4.4. When P = E(G) and F = ~ this as a well-known bound on TSP (see, e.g., 
pp. 272-273 in [15]). There are a number of other bounds which can be used for 
the TSP, but this one is of particular interest in that  it can be modified for use 
in the median problem with more general genomes as discussed in Section 5.2. 
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4.4 Algorithm B B F  

i n p u t :  weighted complete graph (G, w) 
o u t p u t :  solution S to the TSP on (G, w) 

i n i t i a l i z a t i o n  
{ y(s) y(c) 

F ~  
P ~- E(G)  
score+- 0 
best+-- c~ 

} 
p r o c e d u r e  B B F ( P ,  F, S,score,best) 
{ if  IFI = IGI a n d  score < best t h e n  

{ store S = F as current best solution 
bes t~score  

} 
i f  
{ 

IFI < IGI t h e n  
if  L(P) + score < best t h e n  
{ choose gh E P to t ry  to add to F 

where a(g) > 0, a(h) > 0 and w(gh) is as small as possible, 
and F t2 {gh} is not a cycle on less than IGI vertices. 
B B F ( P  - {gh}, F U {gh}, S, score+  w(gh),best) 
B B F ( P  - {gh}, F, S, score,best) 

} 

The recursion functions as a "greedy" search until it first finds a cycle, which is 
necessarily an upper bound. If its cost U = L(E(G)), it is optimal. 

4.5 G e n o m e s  w i t h  d i r e c t i o n a l i t y  

In the case of directed genomes, the notion of breakpoint must be modified to 
take into account the polarity of the two genes. If gh represents the order of 
two genes in one genome, then if another genome contains gh or - h  - g there 
is no breakpoint involved. However, between gh and hg there is a breakpoint,  
similarly between gh and - g - h ,  g -  h, -gh, h - g  or -hg. Adjacency is no longer 
commutative. The reduction of the median problem to TSP  must be somewhat 
different to take into account that  the median genome contains g or - g  but  not 
both. Let G be a complete graph with vertices V = { - g ~ , . . . , - g l , g l , . . .  ,g~}, 
where ~ = {gl , . . . ,  gn}. For each edge gh in E(G), let u(gh) be the number of 
times - g  and h are adjacent in the three genomes A, B and C, and w(gh) = 
3 - u(gh), if g ¢ - h .  If g = - h ,  we simply set w(gh) = - M ,  where M is large 
enough to assure that  a minimum weight cycle must contain the edge -gg. 
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Propos i t i on :  If s = s l , - s i ,  s 2 , - s 2 , . . . ,  s n , - s ~  is the solution of the TSP on 
(G, w), then the median is given by S = sis2..,  sn. 

Pro@ d(S, A) + d(S, B) + d(S, C) = Eghes,g#-h w(gh) 

= nM + Z w(gh) 
ghEs 

Thus S minimizes d(S, A) + d(S, B) + d(S, C) iff s is of minimal weight. 

The same bound L(G) may be constructed as before, though for directed genomes 
#(g) = - M +  smallest weight of any edge incident to g. 

An implementation of the algorithm we have described finds the median of 
three directed genomes of size 50 in one minute, on average on an Origin 200 
computer with a RISC 10000 processor. Random genomes are easily processed 
since L(G) tends to be a fairly tight bound. Three similar genomes are also 
rapidly treated since the first tGI "greedy" recursive steps are likely to produce 
an optimal solution. It is between these extremes that longer execution times 
are encountered. 

4.6 La rge r  s ta rs  

The median problem can also be defined for k > 3 genomes. When all these 
genomes have identical gene sets, the BBF procedure is directly applicable to 
finding the median, the only difference being in the calculation of the weights 
where w(gh ) becomes k - u(gh ). 

5 T h e  c a s e  o f  a m o r e  g e n e r a l  m e d i a n  g e n e  s e t  

5.1 E x t e n s i o n  of  the  p rev ious  m e t h o d  

If the differences among the sets of genes in A,B,C and Z consist of very 
few genes, the bound and algorithm in Section 4.2 can be adapted to function 
relatively efficiently. We redefine w(gh ) =(number of genomes containing both 
9 and h) - u(gh). In the algorithm in Section 4.4,in the call 

B B F ( P  - {9h}, E(S) U {gh},score + w(gh),best), 

"score + w(gh)" must be replaced "score + w(gh) + z(gh)" where z(gh) counts 
the "hidden" breakpoints (cf Section 5.2) caused by the addition of gh to the 
solution. 

5.2 A b e t t e r  b o u n d  

In this section, we develop a bound designed for the situation where the gene 
content of i7 can differ considerably from that of A, B and/or C. 

We assume all genes in A, B or C are also in ~U, and each gene in X' is in at 
least one of A, B or C, since only these can contribute to the weight of a cycle. 
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There will, however, generally remain genes in Z which are absent from some, 
but not all, of A, B and C, and as we shall see, this is the crux of the difficulty. 

The bound in Section 4.3 was based on the fact that  each vertex on a cycle 
is incident to two edges, and it was easy to bound the sum of their two weights. 
In the present context, when examining each vertex g on a cycle, we have to 
take into account tha t  its incident edges may not be relevant to the breakpoint 
calculations with respect to one or more of the given genomes; we may have 
gi C S, ih C S, but i absent from A and g not adjacent to h in A. The breakpoint 
between g and h in S is hidden by gene i. 

Suppose we wish to bound the contributions, to the cost of a cycle, of the 
edges"near" g in S, since the individual edges directly incident may not be rele- 
vant to all of A, B and C, as we have seen. We arbitrarily impose a directionality 
on S. If g is in genome X, let lx and rx be the closest vertices to the left and 
right of g in S that  are also present in genome X, X E {A, B, C}. If g is not in 
genome X, it cannot be involved in a breakpoint. The cost of the edges near g, 
summed over all g C Z,  is then 

1 
w =  (lxg)+ 

X E { A,B,C} geEV]X 

where w(lxg) = 0 if lx is adjacent to g in X, and w(1xg) = 1 otherwise; similarly 
for w(rgx). 

What  is the configuration of the 1x and rx around g in S? To the left of g 
we may have/Y(1).. . /v(2).-. /Y(3), where (Y(1), Y(2), Y(3)) is a permutation of 
(A, B, C), and "rightward exclusion" prevails: ly(1) is in genome Y(1) but not 
in genomes Y(2) or Y(3); Iy(2) is in genome Y(2) but not in genome Y(3);/Y(3) 
is in genome Y(3). If g is absent from one or two of genomes A, B or C, then 
there will be at most two or one I terms, respectively. 

Other possibilities are that  we may have only Iv(1) .../Y(2) left of g, and one 
of these genes is in two of the genomes A, B and C (rightward exclusion still 
obtains), or that  there is only one I gene common to the three genomes. 

A similar accounting of the possibilities can be made for the r genes, involving 
the notion of "leftward exclusion". 

Then a lower bound on the cost of S is found by choosing, for each g C 5:, 
- up to three (depending on how many of A, B, C contain g) genes IA, 1B, IV, not 
necessarily distinct, each lx in genome X,  and some permutation (Y(t), Y(2), Y(3)) 
of (A, B, C) such tha t  Iy(1)lv(2)lv(3) (or 1y(1)lv(2) if there are only two distinct 
genes) is rightward exclusive, and 
- up to three (depending on how many of A, B, C contain g) genes rm, rB, re, not 
necessarily distinct, each rx in genome X, and some permutation (Z(1), Z(2), Z(3)) 
of (A, B, C) such that  rz(1)rz(2)rz(3) (or rz(1)rz(2) if there are only two distinct 
genes) is leftward exclusive, such that  

Xe{A,B,C},gCX 

is minimized by the cycle fragment ly(1)ly(2)Iy(3)grz(1)rz(2)rz(3). 
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Then  a lower bound on W is given by A = ½ )-~ge~ mint (g) ,  since each 
breakpoint is counted at most twice in the sum. 

5.3 A d a p t i n g  t h e  b o u n d  for  t h e  s t e p w i s e  c o n s t r u c t i o n  o f  a c y c l e  

Suppose, somewhat differently from Section 4.3, a candidate fragment of a path 
F = sl s2 . . .  sj of a solution cycle has already been constructed, and a pool 
Q of vertices remain to be tested for possible addition to the cycle. We define 
the availability a x ( g )  to be 0 if g is not in X,  and otherwise to be 2, 1 or 
0, depending on whether g is not in F ,  g is the leftmost or r ightmost in F of 
V ( X )  A V(F) ,  or is some other gene in F ,  respectively. 

Then  A(Q) = I ~g~Q rain t(g), is a lower bound on the weight of the remain- 
der of the cycle, where the search for the minimizing cycle fragment for each g 
is constrained to respect the order of genes already in F and to use both  an i x  
and an r x  only if a x  (g) = 2. Only one of lx  or r x  can be used if if a x  (g) = 1. 

5.4 A l g o r i t h m  B B G  

i n p u t :  genomes A, B, C, median gene set ~U 
o u t p u t :  solution S to the median problem 

i n i t i a l i z a t i o n  
{ F ~- g (arbitrary choice) 

Q ~ Z - g  

score~- 0 
bes t s -  oo 
fo r  X = A , B , C  
{ las t (X)  = g if g is in X,  otherwise las t (X)  = go 

a x  (g) = 2 if g is in X,  otherwise a x  (g) = 0 
} 

} 
p r o c e d u r e  B B G ( Q ,  F, S, a, last,score,best) 
{ if  there are IZI edges in F a n d  score < best t h e n  

{ store S = F as current best solution 
bests-score 

} 
i f  there are less than IZI edges in F t h e n  
{ if  A(Q) + score < best t h e n  

{ choose h E Q to t ry  to add to F ,  i.e.add edge s 'h ,  where s* = stF J 
(except if there are IZI - 1 edges in F:  here we add s 'g)  
fo r  X = A , B , C  i f h  E X 
{ a x ( l a s t ( X ) )  = a x ( I a s t ( X ) )  - 1 

las t ' (X)  = las t (X)  
las t (X)  = h 

} 
B B G ( Q  - {h}, F U s 'h ,  S, a, last,score(F U s* h),best) 
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for X = A , B , C  if h E X 
{  x(tast(x)) =  x(tast(X)) + 1 

last(X) = last'(X) 
remove s*h from further consideration 

} 
B B G ( Q ,  F, S, a, last,score,best) 

} 
} 

} 

Note that in the first recursive call of B B G ,  

score(FU s'h) = score + ~ w(last(X)h) 
XlheX 

unless F contains 112I - 1 edges, in which case 

score(FUs*h)=score+ ~ w(last(X)h)+ ~ w(first(X)h). 
XIhEX XIhEX 

6 D i s c u s s i o n  

The problems of non-uniqueness and underestimation inherent in parsimonious 
analyses of genomic distance (or sequence distance) are attenuated when more 
than two genomes (or sequences) are compared. The median problem is the 
archetype of this effect: triangulation increases accuracy. With other methods 
of genomic distance, however, the median problem turns out to be much more 
difficult than a pairwise comparison [22]. 

The number of breakpoints between two genomes is not only the most general 
measure of genomic distance, requiring no assumptions about the mechanisms of 
genomic evolution underlying the data, but it is also the easiest to calculate. We 
might then expect the median problem for breakpoints to be more tractable than 
for other measures, and the preliminary work reported here supports this hope. 
The relatively easy extension from 3 to k genomes is also a positive indication 
of its feasibility for phylogenetics. 
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