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Abstract. We infer post-hybridization rearrangements in a hybrid ge-
nome, given the gene orders on its chromosomes and some knowledge of
the two parent genomes. We study this in two biologically and computa-
tionally different contexts, genome fusion and interspecific fertilization.
Exact algorithms are furnished for some cases, and a heuristic based on
the Hannenhalli-Pevzner theory for another.

1 Introduction

An important mechanism for the rapid emergence of a new, qualitatively dif-
ferent species is the hybridization of two existing species. These parent species
will generally be fairly closely related, but may have very different phenotypic
expressions. There are actually several types of biological processes that give
rise to hybrids, and these are perhaps most widespread in the plant kingdom.
In this paper, we explore two such processes – genome fusion and interspecific
fertilization. In the first case we give an exact, linear time algorithm for recon-
structing the ancestral hybrid from knowledge of the modern genome and data
about which gene came from which parent species. We then introduce additional
data, on parental species gene order, and try to reconstruct two stages of hybrid
genome evolution, intra- and intergenomic (referring to the haploid components
originating from the two parents). We adapt the techniques of Hannenhalli and
Pevzner [2,3] in a heuristic for separating these stages and give upper and lower
bounds for the optimal transition point between them.

In the case of interspecific fertility, we hypothesize that a key stage in the
stabilization of the hybrid genome can be found by calculating the median of
three diploid genomes, the two parents and the hybrid. We refer to a reduction
of this problem [5] to the Traveling Salesman Problem.

Definitions

A genome G is a collection of N chromosomes G1, · · · , GN . A chromosome
is a string of signed (+ or −) elements from a set E of genes. Each gene in E
appears exactly once in the set of N chromosomes.
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For string X = x1, · · · , xm, we write−X for the inverted string−xm, · · · ,−x1.
We define the following rearrangement operations as in Figure 1: Inversion,
(or reversal) where any proper substring of a chromosome is inverted. (Inverting
the entire chromosome only invokes an alternate notation for the identical chro-
mosome, and does not constitute a rearrangement operation.) Translocation,
where two chromosomes (one or both inverted), exchange prefixes of any length.
A fusion is a translocation where one of the prefixes is the entire chromosome
and the other prefix is null. A fission is a translocation where one of the starting
chromosomes is the null string. Our analyses of translocations implicitly include
fusions and fissions.
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Fig. 1. Schematic view of genome rearrangement processes. Letters represent
positions of genes. Vertical arrows at left indicate boundaries of affected sub-
strings. Translocation exchanges prefixes of two chromosomes. Inversion reverses
the order and sign of genes in a substring (dotted segment).

2 Resolution of Tetraploidy; Ancestral Synteny Unknown

One form of hybridization of two karyotypically distinct species sees the fusion of
two genomes followed by a series of chromosomal rearrangement events until the
hybrid genome is finally stabilized as a diploid (e.g. [1]). The two homologous
versions of each gene, one from each parent species, may diverge functionally
to create a gene family. From the moment of hybridization till the present, the
two parent species may also undergo chromosomal rearrangement. Thus we have
direct access to neither the ancestral hybrid genome nor the two contributing
strains. In this section we provide a method for reconstructing the ancestral
hybrid, given the order of the genes on its chromosomes as well as data (obtained,
for example, from sequence analysis) on which of these genes originated from each
of the parent species.

2.1 Formalization

Consider two genomes A and B having disjoints sets of genes, E(A) and E(B),
respectively. Let G be a third genome with N chromosomes and gene set E =
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E(A) ∪ E(B). Given only E(A), E(B), and G, including how the genes are dis-
tributed and ordered on the N chromosomes of G, the problem is to find d(G),
the minimal number of inversions and translocations necessary to transform G
into an ancestral hybrid genome H (with any number of chromosomes) sat-
isfying the following condition: each chromosome of H contains genes from A
only, or from B only. See Figure 2.
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Fig. 2. Evolution of a hybrid genome resulting from genome fusion when gene
origins, but not ancestral genome organization, is known. Genome H is to be
reconstructed from knowledge of genome G, and ancestral gene sets E(A) and
E(B) only.

2.2 Algorithm

The following procedure solves this problem exactly in time linear in the number
of genes. The output attains the lower bound of the type found by Watterson et
al., except for certain special cases.

– In each chromosome Gi of G, amalgamate each substring of consecutive
A-origin genes to form an A-segment. Similarly form the B-segments.
A-segments and B-segments alternate along the length of the chromosome,
separated by breakpoints.

– Transform each chromosome with an odd number bi > 1 of breakpoints to
a chromosome consisting of a single A-segment and a single B-segment by
means of bi−1

2 inversions as follows.
• While there remain at least 3 breakpoints, invert the fragment between

the first and third breakpoints. Two A-segments are thus made adjacent
and two B-segments are made adjacent.

• Erase the breakpoints between the two adjacent A-segments and between
the two adjacent B segments, thus reducing the number of breakpoints
by two.
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– Transform each chromosome with an even number bi > 2 of breakpoints to
a chromosome consisting of either two A-segments and a single B-segment,
or two B’s and one A, by means of bi−2

2 inversions as follows.
• While there remain at least 4 breakpoints, invert the fragment between

the first and third breakpoints. Two A-segments are thus made adjacent
and two B-segments are made adjacent.

• Erase the breakpoints between the two adjacent A-segments and between
the two adjacent B segments, thus reducing the number of breakpoints
by two.

– Form as many pairs of ABA and BAB chromosomes as possible. Two
translocations performed on each pair suffice to produce a homogeneous
A chromosome and a homogeneous B chromosome, allowing the erasure of
all four breakpoints.

– Suppose some 2-breakpoint chromosomes remain and they are all ABA.
They may be amalgamated two by two, each time with a translocation that
produces a homogeneous A chromosome and an ABA chromosome, and al-
lows the erasure of two breakpoints, until only one ABA remains.

– Suppose instead of the previous step, the only 2-breakpoint chromosomes
remaining are BAB. They may be amalgamated two by two, each time with
a translocation that produces a homogeneous B chromosome and an BAB
chromosome, and allows the erasure of two breakpoints, until only one BAB
remains.

– If there are any 1-breakpoint chromosomes, form as many pairs of them as
possible.
• If there are no 2-breakpoint chromosomes, transform each of the pairs of

one-breakpoint chromosomes into one homogeneous A chromosome and
one homogeneous B by means of a single translocation, and erase the
two breakpoints.

• If there is a 2-breakpoint chromosome, transform all but one of the pairs
of chromosomes into one homogeneous A chromosome and one homoge-
neous B by means of a single translocation, and erase the two break-
points. Then two translocations suffice to transform the remaining pair
and the 2-breakpoint chromosome into three homogeneous chromosomes,
and to erase all four remaining breakpoints.

– If 1- or 2-breakpoint chromosomes remain there are several cases:
• If all that remains is a single 1-breakpoint chromosome, one transloca-

tion (fission) is required to produce two homogeneous chromosomes and
remove the breakpoint.

• If all that remains is a single 1-breakpoint chromosome and a single 2-
breakpoint one, two translocations (one a fission) are required to produce
two homogeneous chromosomes and to remove all three breakpoints.

• If all that remains is a single 2-breakpoint chromosome, two transloca-
tions (fissions) are required to produce two homogeneous chromosomes
and to remove both breakpoints.

The output from this algorithm consists of homogeneous A chromosomes and
homogeneous B chromosomes only, and the number of steps is d∑i bie/2 + Ψ ,
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where Ψ = 0 except if the last step of the algorithm must be activated, i.e.,
when there are no chromosomes Gi of forms A · · ·B or B · · ·A, and an unequal
number of chromosomes of forms A · · ·A and B · · ·B. Here, Ψ = 1.

Note that there are generally many equally good solutions to this problem. In
the next section, we reformulate the problem in order to pin down the structure of
the ancestral genome somewhat. This will require additional data on the parent
genomes and some assumptions about the amount of evolution in the hybrid
compared to the purebred descendants of the parents.

3 Resolution of Tetraploidy; Ancestral Synteny and Gene
Order Inferred

A second version of the hybridization problem uses the modern configurations
A, B and G of the two parent genomes and the hybrid genome, respectively, to
infer the three ancestral genomes A′, B′ and G′ at the moment of hybridization,
as on the left of Figure 3. Note that G′ consists of the chromosomes in A′ plus
the chromosomes in B′.

�
�
�
�
��� ??

A
A
A
A
AAU

XXz ��9

??

??

H = A + B

G

G′

A G

B′A′
G′

B

nA nG nB

time of
hybridization

present

nA + nB

intragenomic
only

nG

intra- and inter-
genomic

Fig. 3. Localization of ancestral hybrid immediately before intergenomic translo-
cations

As a first step, we infer the total number n of evolutionary steps required
to produce G from a construct H consisting of the chromosomes of A and the
chromosomes of B, as on the right of Figure 3. We assume that G′ is one of the
intermediate steps in this evolution so that n = nA + nB + nG, where nX is the
number of steps from genome X ′ to genome X , for X ∈ {A, B, G}.

Under the assumption that one of the first translocations to occur in the
stabilization of the hybrid will be an intergenomic one, involving chromosomes
from both A′ and B′, we could locate G′ at the last step on the path from H
to G before the first intergenomic translocation, as on the right of the figure.
Unfortunately, the optimal path is not unique, and there will generally be one
optimum whose first step is intergenomic, so that nA + nB = 0 and n = nG.
This may indeed be biologically meaningful in some contexts where hybrids
evolve more rapidly than their parents. In other cases we may prefer to look for
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the path where nG is as small as possible, to allow for a maximum of evolution
in the parent species.

It is this latter problem we investigate in this section. First we sketch the
method of Hannenhalli and Pevzner [2,3], hereafter “H-P”, for finding the mini-
mum number of translocations and inversions necessary to transform one genome
into another, and show how a heuristic for finding a minimal nG solution to the
hybridization problem may be grafted onto their algorithm. We then show how
to calculate, relatively quickly, an upper bound for this heuristic based on one
step of the algorithm. Finally, we construct a lower bound based on a breakpoint
argument.

3.1 The H-P Algorithm and a Heuristic for nG

We will only sketch the H-P procedure, which is rather complex, and give ad-
ditional details for those aspects which are modified in our heuristic. The first
step in the comparison of two multi-chromosomal genomes through transloca-
tions and inversions is to reduce it to a problem of comparing two single chro-
mosome genomes through inversion only. These latter genomes are constructed
essentially by concatenating the individual chromosomes in the original genomes
end-to-end in an arbitrary order. (Additional dummy genes, called caps must be
appropriately inserted at the ends of the original chromosomes of both genomes).
Translocation in an original genome becomes inversion in the new one. In the
string representing a chromosome each gene +x is replaced by the pair xtxh,
and −x by xhxt.

To find the minimum inversions d(H, G) necessary to transform one single-
chromosome genome H to another, G, H-P constructs a cycle graph, a bi-
colored graph G(V, E) with vertex set V containing xt and xh for all genes in
E , where black edges connect neighboring vertices in H , and gray edges connect
neighboring vertices in G. Each vertex is thus adjacent to exactly one black
edge and one gray edge. G therefore has a unique decomposition into disjoint
alternating cycles. We set b(G) = |E| − 1, the number of black edges of G, and
c(G) to be the number of cycles of G. Note that c(G) is maximal when G = H .
The size of cycle C is the number of black (or gray) edges in C. The inversion
distance between H and G is then:

d(H, G) = b(G) − c(G) + h(G) + f(G) (1)

where h(G) is the number of hurdles in G, and f(G) = 1 if G is a fortress and
f = 0 if not. (These concepts will be discussed below.)

A key concept in the algorithm is the oriented component. A gray edge in
a cycle is oriented if the inversion disrupting the two adjacent black edges, i.e.,

a adjacent to b in H , b adjacent to c in G, c adjacent to d in H

becomes
a adjacent to c in H , c adjacent to b in G, b adjacent to d in H ,
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replaces the cycle by two cycles. An oriented cycle is one containing at least one
oriented gray edge. Two cycles whose containing gray edges that “cross”, e.g.,
gene i adjacent to gene j in Cycle 1, gene k adjacent to gene t in Cycle 2 in G,
but ordered i, k, j, t in H , are connected. A component of G(V, E) is a subset of
the cycles, built recursively from one cycle, at each step adding all the remaining
cycles connected to any of those already in the construction.

An oriented component has at least one oriented cycle. Hurdles are a partic-
ular class of unoriented components. The entire graph G(V, E) is a fortress if a
certain configuration of hurdles obtains.

The H-P algorithm proceeds by decreasing h − c, the number of hurdles
minus the number of cycles at each step. It handles each oriented component
independently. If component C has γC black edges, and κC cycles, the algorithm
proceeds to find a series of γC − κC inversions that reduces the component to a
set of γC 1-cycles.

Hurdles are treated somewhat differently. There is no inversion which will
immediately increase the number of cycles in such a component. Instead, cer-
tain hurdles undergo an inversion which changes them into oriented components,
decreasing the number of hurdles by one and leaving the number of cycles un-
changed – hurdle “cutting”. Other pairs of hurdles are merged by means of an
inversion that decreases the cycle count by one, but also decreases the number
of hurdles by two.

In each case, after the first inversion in a hurdle or pair of hurdles, the
resulting configuration is an oriented component which may be reduced as above.

Unoriented components which are not hurdles will eventually become ori-
ented through inversions operating on other components, and may then be re-
duced accordingly.

Thus the execution of the H-P algorithm involves repeatedly choosing an
oriented cycle and performing an inversion around an oriented gray edge, thus
increasing the number of cycles by one, except for the first inversion whenever
hurdles must be cut or merged. The strategy for our heuristic focuses on the
successive choices of cycles and edges within cycles. The idea is to stop the
reduction of an oriented component when there is no choice of cycle and edge
within the cycle which corresponds to an intragenomic translocation or inversion
(i.e. involving genes from A only or genes from B only). Similarly, if either the
conversion of a hurdle to an oriented component, or the pairing of two hurdles,
corresponds to an intergenomic transfer, it is postponed.

This procedure is validated by the fact that each oriented component may be
reduced independent of whatever inversions apply outside the component. Even-
tually, when no more intragenomic translocations are possible, we have reached
a locally maximum value of nA + nB (local minimum for nG), the postponed
reductions are re-started and the algorithm proceeds to an optimum solution.

3.2 An Upper Bound for the Heuristic

Suppose the decomposition of G(V, E) contains monogenomic oriented compo-
nents C1, · · · , Cr (each involving genes from a single genome only, A or B).
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The decomposition may also contain other components. If component Ci has
γCi black edges and κCi cycles, the r components will be reduced by y =∑r

i=1 γCi − κCi inversions. Then

d(H, G) − y ≥ nG,

where nG is the value found by the heuristic.
This bound can be improved in three stages:

– By including, in the calculation of y, at least one monogenomic oriented
cycle (if one exists) contained in each bi-genomic oriented component.

– By including, for each bi-genomic oriented component not satisfying the pre-
vious criterion, an intragenomic inversion (if one exists) around an oriented
gray edge in a bi-genomic oriented cycle.

– By repeating the above steps on certain hurdles whose treatment does not
depend on the previous analysis of other hurdles.

3.3 A Lower Bound for nG

Label the genes in G according to whether they come from A or B as in Section
2, and form segments of contiguous A’s and B’s. Suppose there are b breakpoints
in all. Then at least d b

2e translocations and inversions are required to remove
these breakpoints, and these are necessarily intergenomic. I.e.,

⌈
b
2

⌉ ≤ nG.

4 Hybridization through Interspecific Fertility

Hybrids may be formed by the fertilization event of two distinct though related
species, an accident in nature but often feasible in the laboratory, e.g. [4,7].
The parent species A and B may differ from each other by numerous genome
rearrangements. The hybrid G′ is able to survive and propagate despite the
difference between the two haploid components of its diploid genome. Genome
rearrangement of the hybrid rapidly ensues, however, first until a normal sym-
metric diploid configuration G∗ is attained, and then while further stabilization
of the new genome occurs. This scenario is illustrated in Figure 4. The rapid
evolution of the hybrid means that we can often assume the relative stability of
the parent genomes A and B if the evolutionary scale is not too lengthy.

Suppose that the rearrangements of the hybrid between G′ and G∗ are in-
tragenomic. I.e., the two hybrid genomes “conspire” to reorganize internally to
a common form, before fixing any intergenomic translocations. Then the infer-
ence problem which arises is to find G∗, and the amount of rearrangement which
occurred between G′ and G∗, and between G∗ and the modern genome G.

This is essentially the “median problem” for genomes [6]: Given three genomes
A, B and G, find the “median” G∗ which minimizes the sum of a genomic dis-
tance between G∗ and A, G∗ and B, and G∗ and G. In general, this is a difficult
problem, but in one case, namely when the distance is just the sum of the break-
points between G∗ and each of the other three genomes, an algorithm is available
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Fig. 4. Rearrangement before and after development of symmetric diploid.

[5], based on a reduction of the median problem to the Traveling Salesman Prob-
lem, which functions well for genomes containing a fairly large number of genes.

In the case where the rearrangements between G′ and G∗ are intergenomic
from the start, it is difficult to propose a general model; unrestricted rearrange-
ments in this context allow, for example, two versions of the same chromoso-
mal segment in one haploid component, and zero in the other, meaning that
the models of meiosis and mitosis underlying genome rearrangement theory no
longer apply.

In the context of hybridization by interspecific fertilization, an additional
type of data may be available. Genome typing informs us which chromosomal
segments originate in which parental species (cf [7]). This pattern derives from
the normal recombination events in the production of gametes. It may or may
not be the case that the genomic position of a segment is correlated with that of
its homologue in the parental species from which it derives. This illustrates the
difference between this mechanism of hybridization and that of Sections 2 and
3, where genome fusion permits the retention of both of a pair of homologous
genes, one from each parent.

Discussion

At least four aspects of the study of hybridization and rearrangement play a role
in determining the nature of inference problem involved:

– The biological mechanism – genome fusion, interspecific fertilization, or other.

– The kinds of data available – present-day genomes, “ancestral” (i.e. stable
or slowly-evolving) genomes, identification of genes in parental species (fusion
model), or of segments (fertilization model).

– Assumptions about relative rates of evolution and about types of rearrange-
ment event permitted.

– The entities to be inferred – events, syntenies, gene orders, beginning of in-
tergenomic translocations.

The more detailed the kinds of data, the more detailed the kind of recon-
struction that is possible, and the less ambiguity (non-uniqueness) in the results.
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For example, the analysis in Section 2 generally reconstructs a large number of
optimal solutions, while the one in Section 3 will be less ambiguous.

Each type of problem may require different tools from the inventory of meth-
ods developed in recent years for the study of genome rearrangement.

The most obvious domain of application of these methods is in the plant
kingdom. The genomes of the cereals are particularly well-mapped and some of
these show evidence of hybridization of the genome fusion type. The work of
Rieseberg [4,7] illustrates the possibilities of the analysis in Section 4. As more
genomic data becomes available, our methods should be more widely applicable.
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