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Abstract. The objective function of the genome rearrangement prob-
lems allows the integration of other genome-level problems so that they
may be solved simultaneously. Three examples, all of which are hard: 1)
Orientation assignment for unsigned genomes. 2 ) Ortholog identification
in the presence of multiple copies of genes. 3) Linearisation of partially
ordered genomes. The comparison of traditional genetic maps by rear-
rangement algorithms poses all these problems. We combine heuristics
for the first two problems with an exact algorithm for the third to solve
a moderate-sized instance comparing maps of cereal genomes.

1 Introduction

The first chromosomal map dates from 1913 [30], at the same time the definitive
chromosomal theory of heredity [19] was being elaborated. Soon comparative
mapping had become an integral part of genetic research, e.g., Fig. 1 in [31],
published in 1921. Long before the genomic era, comparative maps existed for
Drosophila and other insects, mammals, including humans, livestock and rodents,
cereals and other cultivars and other eukaryotic and prokaryotic groups.

Despite their immediate availability and the wealth of evidence they contain
about evolutionary history, traditional comparative maps were bypassed when
genome rearrangement algorithms ([14,15]), inspired by analyses of organelle and
other small genomes (e.g., [23,29]), were adapted for direct use on DNA segments
derived from whole nuclear genome sequences [24,2,4].

In this paper we discuss an approach to the application of rearrangement
methods to traditional comparative maps, i.e., maps based on estimates of gene
and marker locations in nuclear genome, and not directly on genome sequence.
First, what are the difficulties we encounter when we attempt this?

Coarseness. Lack of resolution of the maps, i.e., two or more genes being
mapped to the same position in one of the genomes. Genome rearrange-
ment algorithms require that the input markers be totally ordered along
each chromosome.

Missing Data. Order ambiguity in composite maps. Because maps constructed
from a single type of experimental data usually contain a limited number
of markers, we are motivated to combine maps for the same genome from
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different sources. Two genes or markers which are not ordered by any of the
component maps will often remain unordered in the composite map. Again,
rearrangement algorithms require that the input markers be totally ordered
along each chromosome.

No Signs. No information about reading direction, i.e., which DNA strand the
gene or marker is on. This information is not available from many of the
methods used to construct maps. Genome rearrangement algorithms require
this “orientation” information for efficient and exact execution.

Matches. Uncertain orthology.
Notation. Different nomenclatural traditions in the genetics communities

producing the chromosomal maps for two species mean different anno-
tations and difficulties for the analyst in deciding which markers in one
genome correspond to markers in the other. Rearrangement algorithms
require that genes or other markers on the two genomes be unequivocally
paired as being derived from a single entity in an ancestral genome.

Paralogy. Several copies or near copies of a gene in a map. This leads to
a one-to-many or many-to-may correspondence between the two maps.
Genome rearrangement algorithms require one-to-one correspondences
as input.

Conflicts. When two or more relatively sparse maps of a genome, compiled
from different sources, are combined prior to comparison with the map of
another genomes, there is often conflict concerning the orders of a some of
the markers on both maps.

With the possible exception of paralogy, these difficulties are neatly avoided
when complete genome sequences are being compared at the sequence level
[24,2,4], though of course there are many other technical problems to be solved
in that approach.

The difficulties listed above all have in common that we are missing some es-
sential biological information required to carry out genome rearrangement anal-
ysis. Moreover, in each case (except notation) the genome rearrangement
problem may be reformulated in such a way that the solution not
only provides a minimal series of reversals and/or translocations
necessary to transform one genome into another, but also supplies
an optimal estimate of the missing information. It is the comparative
context, together with the rearrangement-minimizing objective function, which
“fills in” the gaps in our biological knowledge in the most reasonable way. This
unexpected bounty from the rearrangement analysis is what is alluded to in the
title of this paper.

Exact algorithms have been published to take care of coarseness, missing
data, no sign and paralogy, all requiring exponential worst-case computing
time. The latter two, the topics of Sections 3 and 4, respectively, have been
proved NP-hard, and we have conjectured as much for the first two, which are the
main focus of this paper, as discussed in Section 5. As for the notation problem,
we may rely on one of the curated comparative browsers, such as Gramene [36]
for cereals and some other plants, the NCBI Human-Mouse homology maps [20],
UCSC Genome browser [35] for animals, or CompLDB [21] for livestock.
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Solution of a typical comparative map rearrangement problem would require
treating at least coarseness, no sign and paralogy simultaneously, and usu-
ally missing data and conflict as well. We will state the pertinent combi-
natorial optimization problem, but its exact solution would be feasible only
on very particular, small instances. We do, however, give results of applying
an exact algorithm allowing for coarseness and missing data, in all gener-
ality, applied to data where no sign, paralogy and conflict are dealt with
heuristically during preprocessing, using some of the key ideas in their respective
algorithms.

In Section 2, however, we will start with the essentials of genome rearrange-
ment theory.

2 The Bicoloured Graph in Rearrangement Algorithms

Hannenhalli and Pevzner [15] showed how to find a shortest sequence of re-
versals and translocations that transform one completely specified genome χ
with n genes on k chromosomes into another genome ψ of the same size but
with h chromosomes, in polynomial time. Completely specified means that each
chromosome is totally ordered, the sign of each gene is known, and there is no
paralogy.

As described in [34], we construct a bicoloured graph on 2n + 2k vertices
that decomposes uniquely into a set of alternating-coloured cycles and h + k
alternating-colour paths. First, each gene x in χ determines two vertices, xt and
xh. Two dummy vertices ei1 and ei2 are added to the ends of each chromosome
χi. The adjacencies in χ determine red edges. If x is the left neighbour of y in
χ, and both have positive polarity, then xh is connected by a red edge to yt. If
they both are negative, xt is joined to yh. If x is positive and y negative, or x
is negative and y positive, xh is joined to yh, or xt is joined to yt, respectively.
If x is the first gene in χi, then ei1 is joined to xt or xh depending on whether
x has positive or negative polarity, respectively. If x is the last gene, then ei2 is
joined to xt or xh depending on whether x is negative or positive.

Black edges are added according to the same rules, based on the adjacencies
in genome ψ, though no dummy vertices are added in this genome.

Each vertex is incident to exactly one red and one black edge edge, except
for the dummies in χ and the (non-dummy) vertices at the ends of chromosomes
in ψ, which are each incident to only a red edge. The bicoloured graph decom-
poses uniquely into a number of alternating cycles plus h+ k alternating paths
terminating in either the dummy vertices of χ or the end vertices of ψ, or one of
each. Suppose the number of these paths that terminate in at least one dummy
vertex is j ≤ h + k. If the number of cycles is c, then the minimum number of
reversals r and translocations t necessary to convert χ into ψ is given by:

r + t = n− j − c+ θ (1)

where θ is a correction term that is usually zero for simulated or empirical data.
For simplicity of exposition, we ignore this correction here. Indeed, in a recent
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framework [11] allowing p transpositions and more general block interchanges
via circular intermediate chromosomal fragments, θ ≡ 0, and we simply have

r + t+ 2p = n− j − c. (2)

The n− j − c actual rearrangement steps for transforming χ into ψ can then be
found via certain well-defined operations on the cycles of the bicoloured graph.

3 Sign Assignment

Our first problem is that of adding signs to an unsigned genome so as to a
achieve a minimal reversal distance to the identity permutation 1, · · · , n. This
is equivalent to the problem of sorting an unsigned permutation, known to be
NP-hard [7].

As conjectured in [17] and proved in [16], for all segments of the permutation
consisting of three or more consecutive integers (strips) in increasing order, plus
signs can be given to all these integers, and for all decreasing strips, minus signs
can be given, and this assignment is consistent. with a solution. In [16], it is
also shown how to give signs to 2-strips. The algorithm these authors develop is
exponential only in s, the number of singletons, and is polynomial if s is O(log n).
Unfortunately, in comparative maps s often seems closer to O(n).

Though there is much recent literature on approximation to unsigned reversal
distance, relatively little work has been done on exact algorithms. Caprara et
al. [8] have implemented a branch-and-price algorithm that enables the rapid
sorting of up to 200 elements. Tesler (personal communication) has extended
the approach in [16] to reversal and translocation distance, and implemented it
in GRIMM [33].

4 Duplicate Genes, Paralogy, Gene Families

When there are paralogs, gene orders cannot be modeled as permutations, but
only as more general strings. Though sorting strings by reversals can be done in
polynomial time, this does not automatically give the reversal distance between
strings, in contrast to sorting permutations by reversals, which is equivalent to
calculating reversal distance. Indeed, reversal distance for strings is NP-hard
[26].

The problem in analysing genomes containing paralogs is how to decide which
paralog in one genome should be identified with which one in the other genome,
in a biologically meaningful way. Thus string-based analyses that attempt to
match all or as many as possible of the paralogs of a gene in one genome to
distinct paralogs in the other are only meaningful under the often questionable
assumption that all paralogs were present in the common ancestor genome.

A less ambitious, but biologically more reasonable, approach is to try to
match only one paralog of each gene in one genome to one in the other, such
that the gene orders of the matched paralogs (the exemplars) of each family
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result in a minimal reversal distance [27]. The hypothesis motivating this is that
genomes reduced to contain only these exemplars will better tend to reflect the
actual reversal history than reduced genomes made up of any other choice of
exemplars, using a parsimony argument.

There is a growing literature on the problem of incorporating paralogy into
genome rearrangement theory. This is most meaningfully carried out within the
phylogenetic context [28,3], taking into account that the origin of paralogs in du-
plication events may occur on earlier or later branches of the evolutionary tree.
In addition to work characterizing, approximating or generalizing the exemplar
approach [6,22], there is research on rearrangement in the context of string the-
ory [10,26], conserved interval/block theory [1,3] and other a number of other
approaches [9,32]. Virtually all of these are based on the same principle, that
matching of paralogs should minimize the rearrangement distance

5 Partial Order

A linear map of a chromosome that has several genes or markers at the same
position π, because their order has not been resolved, can be reformulated as a
partial order, where all the genes before π are ordered before all the genes at π
and all the genes at π are ordered before all the genes following π, but the genes
at π are not ordered amongst themselves.

Fig. 1. (Left) Construction of DAGs from individual databases each containing partial

information on genome, due to missing genes and missing order information, followed

by construction of combined DAG representing all known information on the genome.

All edges directed from left to right. (Right) Edges added to DAG to obtain DG

containing all linearization as paths (though not all paths in the DG are linearizations

of the DAG!). Each arrow represents a set of directed edges, one from each element in

one set to each element of the other set.
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For genomes with two or more gene maps constructed from different kinds
of data or using different methodologies, there is only one meaningful way of
combining the order information on two (partially ordered) maps of the same
chromosome containing different subsets of genes. Assuming there are no con-
flicting order relations (a < b, b < a) nor conflicting assignments of genes to
chromosomes among the data sets, for each chromosome we simply take the
union of the partial orders, and extend this set through transitivity.

All the partial order data on a chromosome can be represented in a directed
acyclic graph (DAG) whose vertex set is the union of all gene sets on that chro-
mosome in the contributing data sets, and whose edges correspond to just those
order relations that cannot be derived from other order relations by transitivity.
The outcome of this construction is illustrated on the left of Figure 1.

We can extend genome rearrangement theory to the more general context
where all the chromosomes are general DAGs rather than total orders [37,38].
The rearrangement problem becomes: to infer a transformation sequence
(translocations and/or reversals) for transforming a set of lin-
earizations (topological sorts), one for each chromosomal DAG in
the genome of one species, to a set of linearizations of the chromo-
somal DAGs in the genome of another species, minimizing the number
of translocations and reversals required.

A DAG can generally be linearized in many different ways, all derivable from
a topological sorting routine. All the possible adjacencies in these linear sorts can
be represented by the edges of a directed graph (DG) containing all the edges
of the DAG plus two edges of opposite directions between all pairs of vertices,
which are not ordered by the DAG. This is illustrated on the right in Figure 1.

We can make a bicoloured graph from the set of edges in the DGs for two
partially ordered genomes. In the resulting graph, each of the DAG edges and
both of the edges connecting each of the unordered pairs in the DG for each
chromosome represent potential adjacencies in our eventual linearization of a
genome. The n genes or markers and 2k dummies determine 2n + 2k vertices
and the potential adjacencies determine the red and black edges, based on the
polarity of the genes or markers. Where the construction for the totally ordered
genomes contains exactly n + k red edges and n − h black edges, in our con-
struction in the presence of uncertainty there are more potential edges of each
colour, but only 2n+k−h can be chosen in our construction of the cycle graph,
which is equivalent to the simultaneous linearization by topological sorting of
each chromosome in each genome. It is this problem of selecting the
right subset of edges that makes the problem difficult (and, we
conjecture, NP-hard.)

Our approach to this problem is a depth-first branch and bound search in
the environment of h+ k continually updated partial orders, one for each chro-
mosome in each genome. The strategy is to build cycles and paths one at a time.
After each one is completed, the current best construction serves as a bound to
compare against the maximum number of cycles and paths that could possibly
be built with the remaining eligible edges. The effect of the current bound be-
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comes greater every time a potential edge is chosen for the graph, because this
generally makes many other edges ineligible to be chosen at later steps. This is
not just a question of avoiding multiple edges of the same colour incident to a
single vertex, but also combinations of edges that are incompatible with one of
the DAGs.

We have focused here on obtaining the cycle decomposition; this is equivalent
to optimally linearizing the partial orders, so that finding the rearrangements
themselves can be done using the previously available algorithms and software,
e.g., GRIMM [33].

One problem we have not dealt with is conflict; different maps of the same
genome do occasionally conflict, either because b < a in one data set while a < b
in the other or because a gene is assigned to different chromosomes in the two
data sets. There are a variety of possible ways of resolving order conflicts or,
equivalently, of avoiding any cycles in the construction of the DAG. One way is
to delete all order relations that conflict with at least one other order relation.
Another is to delete a minimal set of order relations so that all conflicts can be
resolved. Perhaps the approach that best balances loss of information with ease
of application and interpretation is to discard a minimum set of gene occurrences
so that all order conflicts are resolved. This method also resolves conflicts due
to gene assignment to different chromosomes. Any gene that is discarded from
all the data sets for one genome has, of course, to be discarded from the other.

6 Synthesis and Application

Given a map comparison that suffers from some combination of coarseness,
missing data, no sign and paralogy, we can ask: simultaneously find the
exemplars and sign assignments resulting in a minimum number of translocations
and inversions necessary to transform some DAG linearisation of one genome into
some DAG linearisation of the other. Since all three component problems are
hard, there is scant hope that their combination is tractable. In this section, we
describe a practical approach to one problem of this type.

Note that if there is conflict, we might want to avoid discarding exemplars
in resolving conflict; if that is impossible, then we should at least take into
account the sizes of any discarded gene families in assuring a minimum of genes
occurrences are discarded. In any case, this minimum should be established
beforehand, and should constrain the exemplar selection, if this is an issue. Under
this one constraint, the goal is the minimization of genomic distance over all
combinations of exemplar choices, eligible conflict resolutions, sign assignments
and DAG linearisations,

The particular application we study, using the implementation of the DAG
linearisation described in [38], is the comparison of the maize and sorghum
genomes. We used one set of genomic markers for maize [25] and two for sorghum
[18,5] as accessible in Gramene [36]. We extracted all markers registered as hav-
ing homologs in maize and at least one of the sorghum datasets. This gave
463 marker occurrences in maize and 387 in sorghum, based on 296 total non-
homologous markers.
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Fig. 2. DAGs for 10 sorghum chromosomes, scaled by number of markers analysed

Partly because this size of this problem is excessive for our implementation,
we ignored any pair of chromosomes, one in maize and one in sorghum, with less
than four markers in common. Some threshold, though perhaps not as large as
four, is also justified by the facts that occasional syntenies of this sort are often
the result of marker homology assignment or other error, and that especially
in the case of singletons, the rearrangement solution simply includes two or
three rearrangements solely to account for the position of this marker, and is
independent of the rearrangement of the rest of the genome. This step left us
with 381 marker occurrences in maize and 301 in sorghum, based on 263 total
non-homologous markers. Thus by removing only 11% of the non-homologous
markers from the original data, we remove 65 % of the excess paralogs, consistent
with our suspicion that these do not represent orthologies.

As a next step, we identified all strips, as this is crucial not only to solving no
signs, but is also helpful for paralogy and conflict. To take further advantage
of strips, we removed paralogs and markers involved conflicts whenever they
interrupted contiguous strips. We then found the exemplars for the remaining
paralogies and resolved the remaining conflicts. To further reduce the size of the
problem, we discarded a number of other singletons.

The remaining markers in the two sorghum and one maize datasets, rep-
resenting 191 different markers, organized into 99 strips and singletons, could
then be input into our exact linearisation algorithm. The DAGs for the sorghum
chromosomes are illustrated in Figure 2. The solution involved 6 non-trivial
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Fig. 3. Conserved segments on sorghum chromosomes, scaled by number of markers

analysed

cycles (more than two edges) and 20 paths, implying a total of 73 inversions and
translocations. Figure 3 portrays the configuration of the conserved segments in
the two genomes, disposed on the sorghum chromosomes.

7 Discussion

A generally usable algorithm for the simultaneous solution of the linearisation
and sign assignment problems seems feasible, since both can be handled within
the partial order framework, though of course this is still a worst-case hard
problem. There are many approaches possible to improve the current bound, to
find a better sequence of edges as candidates to add to the current alternat-
ing colour cycle, and to incorporate heuristics, such as formalizing our strip-
maximization/singleton-minimization procedure for discarding the most likely
erroneous markers.

The situation with paralogy and conflict is more complicated, as the strong
constraint of acyclicity in the DAG representation of the map data cannot be
satisfied. Nevertheless, there is hope for some method drawn from the homology
assignment literature we have cited to be incorporated into the solution of these
problems in the comparative map context. The maize genome is known to have
originated in a genome doubling event [13]; thus the treatment of duplicates
through the exemplar or similar paradigm may be less appropriate than a genome
halving analysis [12], which is only of polynomial complexity.
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