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Abstract. Genome doubling simultaneously doubles all genetic mark-
ers. Genome rearrangement phylogenetics requires that all genomes ana-
lyzed have the same set of orthologs, so that it is not possible to include
doubled and unduplicated genomes in the same phylogeny. A frame-
work for solving this difficulty requires separating out various possible
local configurations of doubled and unduplicated genomes in a given
phylogeny, each of which requires a different strategy for integrating ge-
nomic distance, halving and rearrangement median algorithms. In this
paper we focus on the two cases where doubling precedes a speciation
event and where it occurs independently in both lineages initiated by a
speciation event. We apply these to a new data set containing markers
that are ancient duplicates in two yeast genomes.

1 Introduction

Basic rearrangement phylogeny methods require that the genomic content be the
same in all the organisms being compared, so that every marker (whether gene,
anchor, probe binding site or chromosomal segment) in one genome be identified
with a single orthologous counterpart in each of the others, though adjustments
can be made for a limited amount of marker deletion, insertion and duplication.

Many genomes have been shown to result from an ancestral doubling of
the genome, so that every chromosome, and hence every marker, in the entire
genome is duplicated simultaneously. Subsequently, the doubled genome evolves
through mutation at the DNA sequence level and by chromosomal rearrange-
ment, through intra- and interchromosomal movement of genetic material. This
movement can scramble the order of markers, so that the chromosomal neigh-
bourhood of a marker need bear no resemblance to that of its duplicate.

The present-day genome, which we refer to here as a doubling descendant,
can be decomposed into a set of duplicate or near-duplicate markers dispersed
among the chromosomes. There is no direct way of partitioning the markers
into two sets according to which ones were together in the same half of the
original doubled genome. Genomic distance or rearrangement phylogeny algo-
rithms are not applicable to doubling descendants, since there is a two-to-one
relationship between markers in the doubling descendant and related species
whose divergence predates the doubling event, whereas these algorithms require
a one-to-one correspondence.

G. Tesler and D. Durand (Eds.): RECOMB-CG 2007, LNBI 4751, pp. 162–176, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Parts of the Problem of Polyploids in Rearrangement Phylogeny 163

We have undertaken a program [11,9] of studying rearrangement phylogeny
where doubling descendants are considered along with related unduplicated
genomes. We believe there is no other computationally-oriented literature on
this particular problem. To focus on the problem of marker ambiguity in dou-
bling descendants, and to disentangle it from the difficulties of constructing
phylogenies, we pose our computational problems only within the framework of
the “small” phylogenetic problem, i.e., identifying the ancestral genomes for a
given phylogeny that jointly minimize the sum of the rearrangement distances
along its branches.

In Section 2, we outline a model for generating an arbitrary pattern of doubled
descendants observed at the tips of a given phylogeny. Based on this model, we
then present an simple algorithm for inferring the doubling status of the ancestral
genomes in terms of an economical set of doubling events along the branches of
the phylogeny. Once we have the ancestral doubling statuses, we can approach
the actual rearrangement problem.

First, in Section 3, we identify three kinds of component of this problem for
which algorithms already exist, one a calculation of the genomic distance between
two given genomes with clearly identified orthologs, i.e., the minimum number
of rearrangements necessary to transform one genome into another; the second
a “halving” algorithm for inferring the genome of a doubled genome based on
internal evidence from its modern descendant only, and the third a “medianizing”
process for inferring an ancestral genome from its three neighbouring genomes
in a binary branching tree.

In Section 4, we discuss our recent papers [11,9] on incorporating algorithms for
the three components into an overall procedure for inferring ancestral genomes
in the case of one doubling descendant and two related unduplicated genomes.
The contribution of the present paper starts in Section 5 where we analyze two
ways of relating genomes from two doubling descendants, one where they result
from a single genome doubling event followed by a speciation, and the other where
speciation precedes two genome doublings, one in each lineage. In Section 7, we
apply these two methods to a large data set on yeast.

1.1 Terminology and Scope

In biology, the concept of genome doubling is usually expressed as tetraploidiza-
tion or autotetraploidization, and the both the doubled genome and its doubling
descendant are called tetraploid, even though, generally, the descendants soon
undergo a process called (re-)diploidization and function as normal diploids,
still carrying a full complement of duplicate markers that evolve independently
of each other. Though unambiguous in biological context, implicit in this termi-
nology are many assumptions that are not pertinent to our study. In the yeast
data we study here, for example, Saccharomyces cerevisiae exists during most of
its life cycle as a haploid, only sometimes as a diploid, while Candida glabrata
exists uniquely as a haploid.
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In our considerations, the key aspect of genome doubling is the global dupli-
cation of chromosomes and markers at the moment of doubling. Ploidy is not
relevant in that in any organism that reproduces by meiosis or even by mitosis,
the order of the markers on any of the haploid components (e.g., maternal versus
paternal chromosomes) is essentially identical. There may be different alleles, or
other local differences, but the order is basically invariant. Ongoing variation and
evolution at the level of chromosomal structure in an individual or species are
considered negligible in comparison with the major rearrangements that exist
between genomes separated on an evolutionary time scale.

Although this paper is about polyploidy, then, we will rely largely on terminol-
ogy independent of ploidy: genome doubling, doubling descendant, unduplicated
genomes, genome halving.

The marker complement of a genome may also double by another process,
allotetraploidization, or fusion of two different genomes, a kind of hybridiza-
tion that is probably at least as important biologically as the doubling of a
single genome we focus on in this paper. We do not consider this process here,
for three reasons. One is our interest in exploring the essential difficulty in the
mathematics of doubling, namely the complete ambiguity as to which set of du-
plicate markers were together in each of the two copies of the original genome.
For hybrid doubled genomes, DNA sequence evidence from related but undupli-
cated genomes can generally resolve this ambiguity [5]. Second, hybrids require
reticulate phylogenies which, though of interest themselves, constitute an un-
wanted layer of difficulty that we wish to keep separate at this stage. Finally,
some of the most interesting doubling events (outside the plant kingdom), such
as the ones hypothesized in the “2R” model of early vertebrate evolution or the
well-established doubling in the ancestor of budding yeasts Saccharomyces cere-
visiae and Candida glabrata, which furnish the empirical example for this paper,
are usually treated as doubling of a single genome.

2 Generation and Inference of Polyploidy

Our algorithms require genomic sequence data or other high resolution marker
data spanning the entire genome. This, of course, is only available in a limited
number of phylogenetic domains within the eukaryotes, and then only from se-
lected organisms. Our analysis may also benefit from information on doubling
status not only about the sequenced or mapped genomes, but also from closely
related organisms. Fortunately such information is much easier to obtain exper-
imentally and to come by in the literature, though ancestral events often require
inferential leaps based on the number of chromosomes or the distribution of the
number of copies of each marker.

Our first task, given some mixture of doubling descendants and unduplicated
genomes related by a phylogenetic tree, is to infer the doubling status of the
all the ancestral genomes. Under the simplifying assumptions that all ploidies
are powers of two and can only remain unchanged or change by a factor of two
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Fig. 1. Example of doubling inference problem. Genomes observed only for leaves (filled
dots) of phylogeny. 2 = diploid unduplicated genome. Inferred doubling events indicated
by red dots.

at each step, and the parsimony criterion that the number of doubling steps is
to be minimized, the task is achieved by the recurrence

Π(v) = min
daughter species u of v

Π(u)

at each ancestral vertex v of a phylogenetic tree, as depicted in Fig. 1.
Once Π is inferred, the doubling events may be inferred to occur on those

branches of the tree where the Π differs at the two ends. This is also depicted in
Fig.1. In the ensuing sections, we will illustrate the local configurations giving
rise to various inference problems by highlighting appropriate portions of the
tree in Fig. 1.

3 Existing Resources

Once we have inferred the doubling status of the ancestral genomes, how are we
to approach our original problem: to reconstruct the marker order of the ancestral
genomes and thus infer the cost of the phylogeny in terms of rearrangement
events? Here we discuss some basic elements of the solution.

Genomic distance. Distance based on genomic structure d(X, Y ) is calculated
by linear-time rearrangement algorithms for finding the minimum number of
operations necessary to convert one genome X into another Y . Genomic distance
is defined only between genomes of the same ploidy, as highlighted in the leftmost
example depicted in Fig. 2.

The biologically-motivated rearrangement operations we consider include in-
versions (implying as well change of orientation) of chromosomal segments con-
taining one or more markers, reciprocal translocations (of telomere-containing
segments – suffixes or prefixes – of two chromosomes) and chromosome fission
or fusion. We use the versatile rearrangement algorithm of Bergeron et al. [1],
which we constrain to allow only the operations we have listed.
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Fig. 2. Clockwise, from upper left: Genomic distance, Genome halving, Rearrangement
median

Genome halving. Given a genome T containing a set of markers, each of which
appears twice on the genome, on the same or on different chromosomes, how can
we construct a genome A containing only one copy of each marker, and such that
the genome A ⊕ A consisting of two copies of each chromosome in A minimizes
d(T, A⊕A)? This problem is illustrated in the rightmost example in Fig. 2. Here
we use a linear-time algorithm for solving this problem [6].

Rearrangement median. Given three genomes X ,Y and Z, how can we find the
median genome M such that d(X, M)+d(Y, M)+d(Z, M) is minimized. For this
NP-hard problem, illustrated in the bottom example in Fig. 2. we implement a
heuristic using the principles of Bourque’s MGR [2], but based on the constrained
version of the Bergeron et al. [1] algorithm.

4 Parts Already in Place

In this section we discuss heuristics for prototypical phylogeny problems involv-
ing doubling descendant, and either one or two related unduplicated genomes.

Let T be a doubling descendant, i.e., with n different chromosomes, and 2m
markers, g1,1 · · · , g1,m; g2,1, · · · , g2,m, dispersed in any order on these chromo-
somes. For each i, we call g1,i and g2,i “duplicates”, and the subscript “1” or
“2” is assigned arbitrarily. A potential ancestral doubled genome of T is written
A⊕A, and consists of 2n′ chromosomes, where some half (n′) of the chromosomes
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Fig. 3. Genome halving with one (left) or two (right) unduplicated outgroups

contains exactly one of each of g1,i or g2,i for each i = 1, · · · , m. The remaining n′

chromosomes are each identical to one in the first half, in that where g1,i appears
on a chromosome in the first half, g2,i appears on the corresponding chromosome
in the second half, and vice versa. We define A to be either of the two halves of
A ⊕ A, where the subscript 1 or 2 is suppressed from each g1,i or g2,i. These n′

chromosomes, and the m markers they contain, g1, · · · , gm, constitute a potential
ancestor of T that incurred the doubling event .

Genome halving with an outgroup. With reference to the left of Fig. 3, con-
sider T and and a related unduplicated genome R with markers orthologous to
g1, · · · , gm. Our problem is to find an unduplicated genome A that minimizes

D(T, R) = d(R, A) + d(A ⊕ A, T ). (1)

Our solution in [11], as on the left of Fig. 4, is to generate the set S of genome
halving solutions, then to focus of the subset X ∈ S′ ⊂ S where d(R, X) is min-
imized. We then minimize D(T, R) by seeking heuristically for A along any
trajectory between elements of S′ and the outgroups.

Genome halving with two outgroups. With reference to the right of Fig. 3, con-
sider T and two unduplicated genomes R1 and R2 with markers orthologous to
g1, · · · , gm. Our problem here is to find a diploid genome A and a median genome
M of A, R1 and R2 that minimize

D(T, R1, R2) = d(R1, M) + d(R2, M) + d(A, M) + d(A ⊕ A, T ). (2)

Our solution in [9], as on the right of Fig. 4, is to generate the set S of solu-
tions of the genome halving problem, then to focus of the subset X ∈ S′ ⊂ S
where d(R1, M) + d(R2, M) + d(X, M) is minimized. Then the A minimizing
D(T, R1, R2) is sought, heuristically, along all trajectories between all elements
X ∈ S′ and M(X).
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5 The Case of Two Doubling Descendants

Two related doubled descendants may arise in two ways, depending on the timing
of the speciation event in relation to the doubling. Either speciation at V follows
a single doubling event, as at A on the left of Fig. 5, or the speciation precedes
two independent doubling events in the two lineages, as at A and B on the right
of the figure. Knowing which of the two scenarios is correct depends on knowing
whether their common ancestor is doubled or not, information obtained from
the algorithm in Section 2 or other data.

We will introduce new methods based on tweaking the distance and halving
algorithms, conserving the optimality of the solutions, but allowing one of them
to affect the arbitrary choices required to construct the solution for the other.
First we sketch the halving algorithm.

S

R

T

X

A

S

M(X)

R1

R2

T

X

A

Fig. 4. Halving a doubling descendent T , with one (R) or two (R1, R2) unduplicated
outgroups. The double circles represent two copies of potential ancestral genomes,
including solutions to the genome halving in S, and those on best trajectories between
S and outgroups.

5.1 Halving

Without entering into all its details, we can present enough of the essentials of
the halving algorithm to understand the techniques we use in our heuristics.

As a first step each marker x in a doubled descendant is replaced by a pair
of vertices (xt, xh) or (xh, xt) depending if the DNA is read from left to right
or right to left. The duplicate of marker x = (xt, xh) is written x̄ = (x̄t, x̄h). Of
course ¯̄a = a.

Following this, for each pair of neighbouring markers, say (xt, xh) and (yh, yt),
the two adjacent vertices xh and yh are linked by a black edge, denoted {xh, yh}
in the notation of [1]. For a vertex at the end of a chromosome, say yt, it generates
a virtual edge of form {yt, O}.

The edges thus constructed are then partitioned into natural graphs according
to the following principle: If an edge {a, b} belongs to a natural graph, then so
does some edge of form {ā, c} and some edge of form {b̄, d}. If a natural graph
has an even number of edges, it can be shown that in all optimal ancestral
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Fig. 5. Left: Doubling, then speciation. Right: Speciation, then two independent
doublings.

doubled genomes, the edges coloured gray, say, representing adjacent vertices in
the ancestor, and incident to one of the vertices in this natural graph, necessarily
have as their other endpoint another vertex within the same natural graph1.

For all other natural graphs, there are one or more ways of grouping them pair-
wise into supernatural graphs so that an optimal doubled ancestor exists such that
the edges coloured gray incident to any of the vertices in a supernatural graph have
as their other endpoint another vertex within the same supernatural graph.

Along with the multiplicity of solutions caused by different possible construc-
tions of supernatural graphs, within such graphs and within the natural graphs,
there may be many ways of drawing the gray edges. Without repeating here the
lengthy details of the halving algorithm, it suffices to note that these alternate
ways can be generated by choosing one of the vertices within each supernatural
graph as a starting point.

5.2 Doubling First

Given two doubling descendants T and U as on the left of Figure 5, we would
ideally like to find the doubling descendant V that minimizes d(T, V )+d(V, U)+
d(V, A ⊕ A), where A is any solution of the halving problem on V . Though
d is calculated in linear time, multiple genome rearrangement problems based
on d (e.g., the median problem in Section 3) are hard, so here we propose a
somewhat constrained version of our problem, where V is assumed to be on a
shortest trajectory between T and U . Because d(T, V ) + d(V, U) = d(T, U) is
then constant, the problem becomes that of finding V to minimize d(V, A ⊕ A).

Because it is an edit distance, a genomic distance measurement d(T, U) is
associated with at least one trajectory containing d(T, U)−1 genomes as well as

1 Space precludes us from elaborating on the connection between the optimality cri-
terion – the minimum number of rearrangements to transform the doubled ancestor
to the doubled descendant – and the nature of the bicoloured graph defined by the
black and gray edges. Suffice it to indicate that this involves maximizing the number
of (alternating coloured) cycles and certain paths that make up this graph.



170 C. Zheng, Q. Zhu, and D. Sankoff

T and U themselves, where each successive pair of genomes along the trajectory
differ by exactly one rearrangement operation.

Before explaining a heuristic search for a solution to the constrained version
of the problem, we recall the edge notation we use to represent the adjacencies
in a genome [1]. If two vertices a and b from different markers are adjacent in a
genome, we represent this by an edge {a, b} = {b, a}; for a vertex c is at the end of
a chromosome and hence adjacent to no other vertex, we construct a virtual edge
{c, O}. Then any rearrangement operation can be represented by an operation
on one or two terms in the representation, such as {a, b}, {c, d} → {b, d}, {a, c}
or {a, b} → {b, O}, {a, O} or {a, b}, {c, O} → {b, O}, {a, c}.

We initialize T ∗ = T, U∗ = U . Then our heuristic consists of a search, at
each step, for the “most promising” operation that moves T ∗ towards U∗ or
U∗ towards T ∗. For each operation, we define a score W = x + 6y as follows.
The y component, which is heavily weighted, measures whether the operation
actually diminishes d(V, A⊕A), while the x measures whether the operation only
increases the potential of diminishing d(V, A ⊕ A) in a subsequent operation.

Consider the possible operations that remain on a trajectory from T to U , i.e.,
if V1 is transformed into V2 by the operation, then d(T, V2) = d(T, V1) + 1 and
d(V2, U) = d(V1, U) − 1. We set y = d(V1, A1 ⊕ A1) − d(V2, A2 ⊕ A2) + 1, where
A1 and A2 are solutions of the halving problem for V1 and V2, respectively.

In evaluating an operation changing T ∗, such as {a, b}, {c, d} → {b, d}, {a, c},
we consider the following eight pairs:{a, b},{c, d}, {b, d},{a, c},{ā, b̄},{c̄,d̄}, {b̄, d̄},
{ā, c̄}.

The operation would clearly seem advantageous for subsequent operations if
{b̄, d̄} and/or {ā, c̄} were in T ∗ and/or U∗. There are from zero to four advanta-
geous possibilities. In addition, although one of {b, d}, {a, c} must be in U∗ for
the operation not to veer from an optimal trajectory, it is not necessary that
both of them be. There are zero or one advantageous possibilities. We count how
many h of the total of five advantageous possibilities occur and set x = h + 1.

The score W is in the range [1, 18]. We calculate WT ∗ in this way and
WU∗ by considering operations changing U∗ in the direction of T ∗. Let WX =
maxall operations WX∗ .

If WT ≥ WU and WT ≥ 6, we apply the highest score operation to T ∗. Oth-
erwise apply the highest score operation to U∗, as long as this WU > 1. The
results of this operation and any other having the same score are added as nodes
to a search tree. (The search tree was initialized when T ∗ = T and U∗ = U .)
When there are no more operations that can be applied, we continue to build
the search tree at a higher node. Finally, the leaves of the search tree are exam-
ined to find the highest scoring genome to be V , the last common ancestor of
T and U .

Using a range W ∈ [1, 18] proves clearly better than simply choosing eval-
uating an operation according to whether it y = 1 or y �= 1. For example, in
simulations generated with d(T, V ) = 60, d(V, U) = 55, d(V, A ⊕ A) = 24, the
average estimate d(V, A ⊕ A) using an 18-value scale was 29.8, an overestimate
of 24%, compared to 31.7 with a two-value scale, an overestimate of 32%.
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5.3 Speciation First

In Section 5.2, d(T, V ) + d(V, U) was fixed and the problem was to find the com-
mon ancestor V with the shortest history from the doubling event. We now con-
sider the halving distances of T and U both to be fixed, and look for the particular
unduplicated genomes, ancestral to T and U , that are closest together. Our Al-
gorithm 1 simultaneously halves T and U , choosing the initial vertex within each
of the supernatural graphs (henceforward SNGs) so as to maximize the number
of gray edges in common in the two ancestral genomes being constructed.

Both this heuristic and the one in Section 5.2 are basically O(m3) to arrive at
a single estimate. This, however, generally produces a locally optimal solution.
This is improved by maintaining a search tree in association with each algorithm.
Then the running time is controlled by how large a search tree is maintained in
the quest for lower estimates.

6 Simulations

Simulations of the doubling first model (five chromosomes, number of markers
m = 200, inversions to translocations proportion 5:3, random choice of chromo-
somes to be rearranged, random breakpoints on chromosomes) show that our
algorithm accurately reconstructs the number ν of rearrangements (ten replica-
tions for each value of ν) between the doubling event and the speciation event,
as long as this is not too large (Fig. 6, top). With a longer interval between
doubling and speciation, the halving algorithm reconstructs the unduplicated
ancestor too economically. This, however, is a function not of the number of
rearrangements in the simulation, but of the number of markers. If the number
of markers is doubled from 200 to 400, the inferred number of rearrangements
is corrected, as indicated by the square dot in the figure.

Simulations of the speciation first model (m = 400) show that while the
genome halving distances accurately estimate the number of rearrangements be-
tween doubled ancestor and doubled descendant in the simulation (data not
shown here), the estimated unduplicated ancestors are further apart than the
genomes actually generated in the simulation (Fig. 6, bottom). This bias in-
creases dramatically as a function, not of the distance itself, but of the amount
of rearrangement these ancestors incur to produce the observed doubling descen-
dant. When this “age” is 20, 50 and 80 rearrangements, the bias in the distance
between the ancestors increases from 4 to 18 to 37, respectively. This reflects
the severely non-unique result of the halving algorithm, which our algorithm
attenuates by forcing the reconstructed doubled genomes to resemble each other
as much as possible, but cannot eliminate, especially as the age of the doubling
events recedes into the past.

Nonetheless, the superiority of our algorithm in constraining the two simul-
taneous halving processes to create ancestor genomes as close as possible, in
comparison with a search over all pairs in ST × SU, the Cartesian product of
the two complete sets of solutions of the halving algorithm, is clear in another
experiment.
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Algorithm 1

Construct σT and σU , the set of supernatural graphs for T and U , respectively.
Initialize σ

(1)
T = the subset of SNGs with 2 black edges and σ

(0)
T = σT \ σ

(1)
T

Initialize σ
(1)
U = the subset of SNGs with 2 black edges and σ

(0)
U = σU \ σ

(1)
U

Step1: Order σT and σU

while there remain SNGs in σ
(0)
T or SNGs in σ

(0)
U

while there remain SNGs in σ
(0)
T and either σ

(0)
U is empty or the number of

black edges in σ
(1)
T is no more than in σ

(1)
U , we find a SNG in σ

(0)
T , to

move from σ
(0)
T to σ

(1)
T , as follows:

for each SNG s in σ
(0)
T , to count the maximum possible number of

gray edges it could have in common with SNGs in σ
(1)
U :

for i = 1, · · · , |σ(1)
U |, if SNG s has ki vertices in common with

ti, the i−th SNG in σ
(1)
U , the maximum number of gray

edges they have in common is [ ki
2 ].

Then the score of s is
∑

i,···,|σ(1)
U

|[
ki
2 ].

We add the highest scoring s to σ
(1)
T .

end while
while there remain SNGs in σ

(0)
U , and either σ

(0)
T is empty or the number

of black edges in σ
(1)
U is less than σ

(1)
T ), we find a SNG in σ

(0)
U , to

move from σ
(0)
U to σ

(1)
U , in the analogous way as for T

end while
end while
Step2: Adding gray edges to σT and σU

For the root node of the search tree, add gray edges to all 2-edge SNGs in σT

and σU

while there remain SNGs in σT or σU without gray edges.
while there remain SNGs in σT without gray edges and either all SNGs in

σU have gray edges or the number of gray edges in σT is no more
than the number of gray edges in σU , let s be the first SNG in σT

(according to the order in which it was added to σ
(1)
T ) that has no

gray edges. If s has l black edges, then we have l ways to choose the
first black edge in this s, and 2 choices for orienting this edge,
2l choices in all, after which the dedouble algorithm proceeds
deterministically to add gray edges within the SNG s.
We add nodes to the search tree representing all the choices (out of
the 2l) that maximize the number of gray edges in common with σU .

end while
while there remain SNGs in σU without gray edges either all SNGs in σT

have gray edges or the number of gray edges in σU is less than the
number of gray edges in σT , let s be the first SNG in σU (according to
the order in which it was added to σ

(1)
U ) that has no gray edges. We

use the same process as with T to get the best orderings within s and
the associated gray edges.

end while
end while
Solutions to the genome halving can then be found by tracing backwards from
any leaf in the search tree.
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Fig. 6. Estimated distance: top, between doubling and speciation (age of ancestor=50),
bottom, between unduplicated ancestors (ages: old=80, medium=50, young=20)

We set the initial number of markers to be 150, randomly assigned to 8
chromosomes. Then we carried out 45 random rearrangements to create one
doubling ancestor and 38 independent rearrangements to create another. After
tetraploidization formed two 300-marker genomes, we applied another 42 and 50
rearrangements, respectively, to create the modern doubling descendants. Then,
using our knowledge of the ancestral genomes, we found that the distance be-
tween the two simulated ancestors was 75 and that the halving distances were 38
and 50, respectively. Using our speciation first algorithms on the two doubling
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descendants, we reached an inter-ancestor distance d(A, B) = 84 (instead of the
simulated distance of 75) after three hours of calculation while the search of the
Cartesian product only dropped to 87 (from 102) after 24 hours of calculation,
involving almost 1,000,000 pairs of optimal ancestors.

7 Genome Doubling in Yeast

Wolfe and Shields [10] discovered an ancient genome doubling in the ancestry of
Saccharomyces cerevisiae in 1997 after this organism became the first to have its
genome sequenced [7]. According to [8], the recently sequenced Candida glabrata
[4] shares this doubled ancestor. We extracted data from YGOB (Yeast Genome
Browser) [3], on the orders and orientation of the exactly 600 genes identified as
duplicates in both genomes, i.e., 300 duplicated genes.

We were able to obtain information from YGOB about which of the two
duplicates in one genome is orthologous to which duplicate in the other genome.
This is essential to the algorithm in Section 5.2. In general, we would have to
infer this information through sequence comparison methods. This question is
not pertinent to the algorithm in Section 5.3.

Though the results of the algorithm in Section 2 suggests that the theory in
[8] is the most parsimonious, there is still enough uncertainty in yeast phyloge-
netics and enough independent occurrences of genome doubling, that it is worth
comparing the results of our two methods to dispute or confirm the common
doubled ancestor hypothesis. In Fig. 5 we compare the analysis in the left hand
diagram with that in the right, on the yeast data and on data of approximately
the same size generated first according to the doubling first model and then
according to speciation first.

We first analyzed the yeast data using the doubling first and speciation first
algorithms. The results appear in the centre row of Table 1. (Because of the
asymmetry of the doubling first algorithm with respect to T and U , there are
two sets of inferences for this case.) We then used the numbers of rearrange-
ments inferred for yeast, using the same number of markers and chromosomes,
to simulate the same number of rearrangements in a random model, both with
doubling first and speciation first.

We then applied both algorithms, doubling first and speciation first, to both
sets of data. Note first in Table 1 that the number of rearrangements inferred
for the doubling first model using the doubling first algorithm is not exactly the
same as that used to generate the data, and likewise for the speciation first case.
This is normal, because the inference of rearrangements often is more economical
than the rearrangements actually used.

The rows in Table 1 show that the doubling first analysis is better than
the speciation first analysis (457 rearrangements versus 632) when the data are
generated by doubling first, whereas the speciation first analysis is better (589
versus 604) when the data is generated with speciation first. The doubling first
analysis clearly accounts better for the yeast data (505-521 versus 622), while
the simulations assure that the biases in the two methods cannot be invoked, so
our analysis confirms the hypothesis in [8].
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Table 1. Doubling first (d.f) and speciation first (s.f.) analyses each produce a more
parsimonious analysis of simulations produced by the corresponding model (d.f. or s.f.,
respectively). Averages of at least five simulations shown, but the effect holds for each
simulation individually. The d.f. analysis gives a far better fit to the yeast data than
s.f. Second yeast row reverses the roles of U and T in the algorithm.

analysis→ doubling first (d.f.) speciation first (s.f.)
data source↓ d(T, V ) d(V, U) d(V, A ⊕ A) total d(T, A ⊕ A) d(A, B) d(U, B ⊕ B) total
sim by d.f.: 102 213 166 481
inferred: 119 181 157 457 214 163 255 632
yeast: 92 245 168 505 193 179 250 622

122 215 184 521
sim by s.f.: 177 164 225 566
inferred: 146 354 104 604 164 228 197 589

8 Conclusions

Our previous work on integrating genome halving and other algorithms as a way
of incorporating polyploids into rearrangement phylogeny used this software “off
the shelf”, searching all the many alternate outputs from one as inputs to the
other. In the present paper we have avoided an exhaustive search strategy by
intervening at the choice points in the genomic distance algorithm in the case of
the doubling first problem and in the genome halving algorithm in the case of
the speciation first problems. We have shown that these heuristics increase the
efficiency of the search and to provide better upper bounds.

The main difficulty in this problem area remains the great multiplicity of
solutions to the halving problem. Though this was only encountered here in
the speciation first problem, leading to a overestimation of the inter-ancestor
distance, it will also have to be dealt with in the doubling first scenario, when
the inferred ancestor has to be integrated into a larger phylogenetic tree and
compared to other doubled or unduplicated genomes, as in [11] and [9].
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