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ABSTRACT

Multiple alignment of macromolecular sequences generalizes from N = 2 to N > 3 the com-

parison of N sequences which have diverged through the local processes of insertion, deletion
and substitution. Gene-order sequences diverge through non-local genome rearrangement
processes such as inversion (or reversal) and transposition. In this paper we show which
formulations of multiple alignment have counterparts in multiple rearrangement. Based on
difficulties inherent in rearrangement edit-distance calculation and interpretation, we argue
for the simpler "breakpoint analysis." Consensus-based multiple rearrangement of N > 3 or-
ders can be solved exactly through reduction to instances of the Travelling Salesman Problem
(TSP). We propose a branch-and-bound solution to TSP particularly suited to these instances.
Simulations show how non-uniqueness of the solution is attenuated with increasing numbers
of data genomes. Tree-based multiple alignment can be achieved to a great degree of accuracy
by decomposing the tree into a number of overlapping 3-stars centered on the non-terminal
nodes, and solving the consensus-based problem iteratively for these nodes until convergence.
Accuracy improves with very careful initializations at the non-terminal nodes. The degree of
non-uniqueness of solutions depends on the position of the node in the tree in terms of path
length to the terminal vertices.

1. INTRODUCTION

MULTIPLE ALIGNMENT OF macromolecular sequences, an important topic of algorithmic research for
at least 25 years (Sankoff et al, 1973; Sankoff, 1997), generalizes from N = 2 to N > 3 the comparison

of N sequences which have diverged through the local processes of insertion, deletion and substitution.
Recently there has been much interest in gene-order sequences which diverge through non-local genome
rearrangement processes such as inversion (or reversal) and transposition (cf. Pevzner and Waterman, 1995;
Waterman, 1995, ch.15.4.2; Setubal and Meidanis, 1997, ch.7; Gusfield, 1997, ch. 19). What would be the
analog of multiple alignment under these models of divergence? In this introduction we first review some
formulations of multiple alignment and show which have counterparts in multiple rearrangement. We then
discuss the difficulties inherent in edit-distance formulations of multiple rearrangement, referring to relevant
work, and argue for a potentially simpler approach based on "breakpoint analysis."
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FIG. 1. Multiple sequence alignment using gaps.

(a) (b) (c)
FIG. 2. Three ways of defining column costs in terms of pairwise comparisons.

1.1. Multiple sequence alignment
The goal of multiple sequence alignment is to align the terms of N sequences into a number of relatively

homogeneous columns through the judicious insertion of one or more null terms, or gaps, between consecutive
terms in some or all of the sequences, as in Figure 1, so as to optimize an objective cost function.

In the simplest case, this objective is just the sum of column costs across all columns of the alignment.
Each column cost measures how different the terms in that column are among themselves. For example, in a

"complete" comparison the column cost is the number of pairs of sequences which differ in that column, as

represented in (a) in Figure 2, in which every vertex (sequence) is compared to every other.
Another definition of column cost depends on a given phylogenetic tree, as in (b) in the figure, in which

the leaves are the data sequences and the internal nodes (open dots) are hypothetical ancestral sequences
reconstructed by some method from the contemporary sequences. Both data and reconstructed sequences
must be aligned and the column cost is just the number of tree branches where the sequences at the two
ends have different elements in the column. A special case of the tree-based comparison is the "consensus"
comparison, represented in (c), where there is just one reconstructed sequence.

There are many other formulations of the problem which we will not discuss, e.g., the column cost may be
N

—

M, where M is the number of occurrences of the most frequent term in a column.

1.2. The analogy with genome rearrangement
A key difference between sequence comparison and gene-order comparison is that in the former, algorithms

try to identify corresponding terms in the two sequences being compared and the number of divergence steps
then falls out directly, whereas in the latter the correspondence (i.e., alignment) is given and it is the number of
steps which must be calculated. (Note that combined alignment and rearrangement problems can be formulated
for macromolecular sequences. Cf. Schöniger and Waterman, 1992; Varré et al., 1997. This potentially difficult
problem is outside the scope of this paper.)

Thus version (a) of the multiple alignment problem has no analog in gene-order rearrangement, since there
is nothing to optimize once the pairwise distances are given. On the other hand, in versions (b) and (c) of the
problem, there is something to optimize, namely the ancestral gene orders represented by the open dots. This
is the focus of this article.

1.3. Some background on rearrangement distances
The algorithmic study of comparative genomics has focused on inferring the most economical explanation

for observed differences in gene orders in two or more genomes in terms of a limited number of rearrangement
processes. For single-chromosome genomes, this has been formulated as the problem of calculating an edit
distance between two linear orders on the same set of objects, representing the ordering of homologous genes
in two genomes. In the most realistic version of the problem, a sign (plus or minus) is associated with each
object in the linear order, representing the direction, or orientation, of transcription (sometimes referred to as

strandedness) of the corresponding gene. The elementary edit operations may include one or more of:

inversion, or reversal, of any number of consecutive terms in the ordered set, which, in the case of signed
orders, also reverses the polarity of each term within the scope of the inversion. Kececioglu and Sankoff
(1993, 1995) considered the problem of computing the minimum reversal distance between two given
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permutations in the unsigned case, including approximation algorithms and an exact algorithm feasible
for moderately long permutations. Bafna and Pevzner (1996) gave improved approximation algorithms
for this problem. Caprara (1997a) showed this problem to be NP-complete. Kececioglu and Sankoff
(1994) also found tight lower and upper bounds for the signed case and implemented an exact algorithm
which worked rapidly for long permutations. Indeed, Hannenhalli and Pevzner ( 1995a) showed that the
signed problem is only of polynomial complexity, and an improved polynomial algorithm was given by
Kaplan er al. (1997).

transposition of any number of consecutive terms from their position in the order to a new position between
any other pair of consecutive terms. This may or may not also involve an inversion. Computation of the
transposition distance between two permutations was considered by Bafna and Pevzner (1995). Sankoff
et al. (1992), Sankoff (1992), Blanchette et al (1996), and Gu et al (1997) implemented and applied
heuristics to compute edit distances which combine inversions, transpositions and deletions, in some

cases allowing differential weighting of these operations.
In addition, for multi-chromosome genomes, a major role is played by:

reciprocal translocation. Kececioglu and Ravi (1995) began the investigation of translocation distances,
and Hannenhalli and Pevzner (1995b) have shown that one formulation of the problem is of polynomial
complexity, A relaxed form of translocation distance was proposed by Ferretti et al. (1996) and the
complexity of its calculation was shown to be NP-complete by DasGupta et al (1997).

1.4. Extensions to N > 3

There have been a number of investigations ofphylogeny based on the algorithmic comparison of gene order
within a number of genomes, using pairwise comparisons followed by distance matrix methods (e.g., Sankoff
et al, 1992). However, treeing methods which involve the optimal reconstruction of gene order at ancestral
nodes (Hannenhalli et al, 1995; Sankoff et al, 1996) have been little used because of the computational
difficulty in generalizing measures of genomic distance to more than two genomes. Caprara (1997b) has
shown that the most promising case, reversal distance for only three signed permutations, is NP-hard. We
argue that

this computational difficulty—there are no algorithms guaranteeing exact solutions for even three relatively
short genomes—together with

unwarranted assumptions as to the relative importance of different rearrangement events implicit in genome
distances such as minimum reversal distance, minimum transposition distance, minimum translocation
distance and even distances combining these (cf. Blanchette etal, 1996), as well as

the fallacy that calculation of an edit distance allows the recoverability of the "true" history of genomic
divergence—in fact, the severe non-uniqueness of the optimal edit path for moderate or large gene-
order distances has much worse (i.e., non-local) consequences than with the classical multiple alignment
problem,

the bias demonstrated in simulations, where calculation of genome distance severely underestimates the
actual number of events generating moderate or large gene-order differences, and

the sensitivity of these measures to errors and other small changes in the data. These are especially numerous
when gene order has been determined by mapping techniques other than complete sequencing (Sankoff
etal, 1997)

all militate in favour of extending gene-order comparisons to three or more genomes through a much simpler
and model-free metric. In this paper we suggest the number of breakpoints as just such a metric.

1.5. Presentation of the research

In Section 2 we define the breakpoint metric for unoriented and oriented genomes, and set up the analogy to

multiple alignment modes (b) and (c) in Figure 2. In Section 3 we review how (c), consensus-based multiple
rearrangement, can be solved exactly through reduction to a not unwieldy version of the Travelling Salesman
Problem. In Section 4, we use this exact solution applied to simulated data to show how the problem of
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non-uniqueness is attenuated with increasing numbers of data genomes. In Section 5, we report how (b), tree-
based multiple alignment, can be achieved to a great degree of accuracy by decomposing the tree into a number
of overlapping 3-stars centered on the non-terminal nodes, and "steinerizing"—solving the consensus-based
problem iteratively for these nodes until convergence. The accuracy depends on very careful initializations
at the non-terminal nodes, and can be assessed through simulation. In Section 6 we again investigate non-

uniqueness, this time focusing on the effect of the position of the node in the tree in terms of path length to
the terminal vertices.

2. BREAKPOINT ANALYSIS

Consider two genomes A = ai   -an and B = bi  

 

 b„ on the same set of genes [gi,..., g„}. We say
a¡ and ai+i are adjacent in A. We also consider that ai is adjacent to the genome "start" and an is adjacent
to the "end." For circular genomes, it suffices to consider that an and ai are adjacent. If two genes g and h
are adjacent in A but not in B, they determine a breakpoint in A. We define <P(A, B) to be the number of
breakpoints in A. This is clearly equal to the number of breakpoints in B.

For two genomes whose gene sets are not identical, to calculate the breakpoints, we first remove all genes
that are present in only one of the genomes. We then find the breakpoints for the reduced genomes, now of
identical composition. The positions of the breakpoints are well-defined in the reduced genomes. In the full
genomes, there is a breakpoint between a, and a¡+i only if this is a breakpoint for the reduced genome. If, as
in Figure 3, there is a breakpoint between a¡ and a¡ in the reduced genome, where j ^ i + 1, then there is a

corresponding breakpoint in the full genome, but its position is ambiguous. We call it a hidden breakpoint; it
is somewhere between a¡ and a¡, which are not adjacent.

The number ofbreakpoints between two genomes is not only the most general measure of genomic distance,
requiring no assumptions about the mechanisms of genomic evolution (inversion versus transposition versus

translocation) underlying the data, but it is also the easiest to calculate. In addition, it has proven relations to
the edit distances; e.g., half the number of breakpoints is a lower bound on the reversal distance.

2.1. Oriented genomes
Our simulations will involve directed, or oriented, genomes; we assume we know the strandedness, or

direction of transcription, of each gene in each genome in the data set. In this case, the notion of breakpoint
must be modified to take into account the polarity of the two genes. If gh represents the order of two genes
in one genome, then if another genome contains gh or

—

h
—

g there is no breakpoint involved. However,
between gh and hg there is a breakpoint, similarly between gh and

—

g
—

h, g
—

h, —gh, h
—

g or —hg.
Adjacency is no longer commutative.

2.2. Tree-based multiple genome rearrangement
The problem is formulated as follows: Let T = (V, E) be an unrooted tree with N > 3 leaves and £ =

[gi,..., g„} be a set of genes. Suppose {Vi,..., VN} c V(T) are the leaves of the tree and {V^+i,..., V¿},
where N < L < 2N

—

2, are the internal vertices of the tree. The data consist, for each leaf V¡,i = l,..., N,
of a circular permutation G' = g\    g'n of the genes in E, representing the genome of a contemporary

genome A 1 | 4 5 | 3 6

t t
genome A, reduced 1 | 4 5 | 3

genome B, reduced | 1 3 | 4 5

A K
genome B 2 13 7 4 5

FIG. 3. Defining breakpoints for (circular) genomes with different gene contents. Position of breakpoints (vertical
strokes) found first in reduced genomes with identical gene sets. This unambiguously determines breakpoints between 1
and 4 and between 5 and 3 in genome A. Breakpoint between 5 and 1 in genome B is "hidden" by gene 2; that between 3
and 4 is hidden by gene 7.
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species. The task is to find the permutations GN+l,... ,GL associated with the internal (ancestral) vertices
V/v+i,... ,VL, suchthat

J2 $(G\ GJ)
ViVjeEiT)

is minimized.

2.3. Binary tree- versus consensus-based multiple genome rearrangement
We will concentrate on two extreme cases: that of completely resolved, or binary, trees, where L = 2N

—

2
and all non-terminal nodes are of degree 3 ; and that ofcompletely unresolved trees, or "stars," where L = N +1
and the single non-terminal node has degree N.

3. CONSENSUS-BASED REARRANGEMENT

Though all the breakpoint-based multiple rearrangement problems in Section 2 seem NP-hard, as reported
for N

—

3 by Pe'er and Shamir (1998), for moderate n they are tractable, since they may be reduced to a

number of interconnected instances of the Traveling Salesman Problem (TSP). In the case of consensus-based
rearrangement, the solution, involving just one TSP, is globally optimal.

We define T to be the complete graph whose vertices are the elements of E. For each edge gh in £(r), let
u(gh) be the number of times g and h are adjacent in the N data genomes. Set w(gh) = N

—

u(gh). Then
the solution to TSP on (V, w) traces out an optimal genome S on E, since if g and h are adjacent in 5, but
not in Vi, for example, then they form a breakpoint in S.

For oriented genomes, the reduction of the median problem to TSP must be somewhat different to take
into account that the median genome contains g or

—

g but not both. Let T be a complete graph with vertices
V(r) = {—gn,    , —gi, gi,   -, gn}- For each edge gh in £(r), let u(gh) be the number of times

—

g and
h are adjacent in the N data genomes and w(gh) = N

—

u(gh), if g ^ —h. If g = —h, we simply set
w(gh) = —Z, where Z is large enough to assure that a minimum weight cycle must contain the edge

—

gg.

Proposition. If s = s\, —si, s2, —s2,... ,s„, —s„ is the solution of the TSP on (V, w), then the median
is given by S = s¡s2

   

sn.

Proof.
N

j2<t>(s,Vi)= J2 ww>
i = l gheS.g^-h

= nZ + ^ w(gh).
ghes

Thus S minimizes X!,=i *(£, V¡) iff s is of minimal weight.  

3.1. A lower bound
To solve this restricted form of TSP, we resort to a branch-and-bound algorithm based on the following

lower bound:
Let the edge-pool P ç E(T), be disjoint from the fragment F Ç £(r, ) and let score

—

¿~^gh(iF w(gh).
Define a(g), the availability of g e V(r), to be 2, 1 or 0, depending on whether g is incident to zero, one,
or more than one edge in F, respectively, Let p(g) be the sum of the a(g) smallest weights of edges in P
incident to g. (p(g) is undefined if there are less than a(g) such edges.)

If there is a TSP solution cycle S of weight Ws which includes all the edges in the fragment F and some
additional edges drawn from the edge-pool P, let v(g) be the sum of the weights of the exactly a(g) edges of
S in P incident to g. (In this case p(g) is always defined.) Clearly ¡x(g) < v(g).

Now,
Ws = score + J> w(gh)

gh£E(S)r\P
1 v^

= score H— > w(gh)2 g\ghaE(S)np
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since each edge in E(S) n P is counted twice in the sum. Thus

1 ^Ws = score +- ¿_j yC?)-1 g\gheE(S)np

Defining

IIP} =L(P) =\ Y, ^}'
g\gh£E(S)nP

1
2

score + L(P) < score +
-

>_, v(s)
—

Ws.
g\gh€E(S)np

We use L(P) as a lower bound in a branch-and-bound TSP algorithm. When P
—

E(T) and F = <t> this as

a well-known bound on TSP (see, e.g., Minieka, 1978, pp. 272-273). There are a number of other bounds
which can be used for the TSP, but this one is of particular interest in that it is a relatively tight bound for the
type of TSP originating in breakpoint problems, especialy the case N = 3, and it can be modified for use in
the case the input genomes have different sets of genes (Sankoff and Blanchette, 1997).

Note that in this algorithm the recursion functions as a "greedy" search until it first finds a cycle, which is
necessarily an upper bound. If its cost U = L(E(T)), it is optimal.

TSP algorithm

input: weighted complete graph (r, w)
output: solution S to the TSP on (r, w)

initialization
v(S) <- V(D
F <r- <P

p «- £(r)
score-«— 0
best«— oo

routine BBTSP (P, F, S, score, best)
if |£| = |n and score < best then

store S
—

F as current best solution
best«-score

endif

if \F\ < |T|then
if L(P)+ score < best then

choose gh e P to try to add to F
where a(g) > 0, a(h) > 0 and w(gh) is as small as possible,
and F U {gh} is not a cycle on less than |T| vertices.
BBTSP (P

-

{gh}, F U [gh}, S, score + w(gh), best)
BBTSP (P

-

[gh}, F, S, score, best)
endif

endif
end

3.2. Differing gene sets

In general, the genomes available for this type of analysis will not all have exactly the same set of genes.
In this case, it is not always clear what the ancestral gene sets should contain; and when there is a rule for
deriving these sets, the solution to the consensus problem, even in the case N = 3, is much more difficult.
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We have generalized the lower bound calculation and the BBTSP routine to give the optimal consensus

order of N genomes with difering gene sets (Sankoff and Blanchette, 1997). The computing time, however, is
much greater, and so in the ensuing sections we will confine our investigation to the case of a common gene set.

4. THE UNIQUENESS OF THE CONSENSUS

The reduction to TSP allows us to obtain global solutions for moderate-sized problems in reasonable time—
typically 1 second for reconstructing the consensus of three or more scrambled genomes with n

—

20 genes,
and well less than a minute for n = 50, on an Origin 200 computer with a RISC 10000 processor. This enables
us to undertake systematic simulation studies. To assess the uniqueness of the solutions to the problem as a

function of the number of genomes simultaneously rearranged, we constructed A' genomes, each by applying
a number p of random reversals to a common ancestor (1,2,..., 20), and then solved the consensus problem.
(Recall that each reversal reverses the order of a number of consecutive terms and also changes the sign of
each of these terms. It adds at most two new breakpoints. We used reversals not because we privilege them as

a model of biological evolution but simply as a convenient way of scrambling permutations.)
We searched for other multiple solutions by permuting the labels of the 20 genes in the input. We repeated

each example with 10 different gene labelings. We compared all 10 solutions obtained by averaging their
pairwise distances (i.e., the number of breakpoints between the two solution genomes). For each value of N
between 2 and 16, and each value of p between 1 and 12, we repeated the experiment for 10 different examples
and averaged their results, running the program 100 times— 10 examples times 10 gene labelings per example.

Figure 4 shows the results of these experiments. We note first that the curves for large p are systematically
"worse" than those for low p; the more scrambled are the data genomes, the less likely they are to have a

unique consensus.

More interesting perhaps, is the rapid, almost linear, decrease in non-unicity for each p as the number of
data genomes increases. For 15 branches or more, there seems to be a unique consensus, no matter how large
p is. And in all cases examined, this consensus order was none other than (1,2,..., 20). Of course, for larger
genomes, we could expect a larger cut-off point.

5. BINARY TREE-BASED REARRANGEMENT

A general method for the inference of ancestral genomes on a fixed binary tree such as in Figure 1 (c) is the
iterative improvement method of Sankoff et al (1976), as adapted for the genomics context in Sankoff et al

Distance betveen optimal solutions for a N-star

2 —\-1-1-1-1-l-1-
2 4 6 8 10 12 14

Number of genomes (N)
FIG. 4. Diversity of solutions to consensus problem as a function of N.
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(1996), Ferretti et al. (1996). Each of the N
—

2 internal vertices, together with its three neighbors, defines
a 3-star. The solution to the tree-based multiple rearrangement problem will have a reconstructed genome
associated with each such vertex, which must be a solution to the consensus-based problem determined by
these neighbors.

The strategy is to start with an initial tree where some genome is assigned to each internal genome, then to

improve (steinerize) one of these ancestral genomes at a time by solving the consensus problem for the 3-star
consisting of its immediate neighbours (the "median problem"), iterating across the tree until convergence.
Of course, there is no guarantee that convergence will occur at a global optimum.

Without loss of generality, we may assume that the internal vertices are numbered in such a way that of the
three neighbors of each vertex, two either precede it in the list or are leaves. This assures that if genomes for
the internal vertices are inferred one by one according to this numbering, the set of untreated vertices, as it
shrinks, at all times forms a connected tree.

Then the algorithm optimize.tree, in which we leave unspecified how to set up the initial TSP for each
genome to be reconstructed, converges to a (local) optimum:

algorithm optimize.tree

input G1.GN
cost <— CO
extremities <— {1, ..., N}
internal <- {AT + 1.2N

-

2}
do for M = N + l,...,2N -2,

set.up.TSP for GM
solve TSP for GM
remove the two neighbors of VM preceding it in

the vertex numbering from extremities
transfer Vm from internal to extremities

enddo
routine iterate, median
output GN+l,...,G2N~2

In each ofSections 5.2,5.3 and 5.4 below, the set.up.TSP instruction will be replaced by a specific routine. The
iterate.median routine is independent of the set-up strategy in the initialization; in fact all three approaches
to be used are identical for 3-leaf trees (i.e., the median problem).

iterate,median

routine iterate,median
while C = J2v,Vj€E(T) &(&', G') < cost,

cost <— C
do for M = N + l,...,2N -2,

G* <-median(G\ GJ, Gk), where Vh, V¡ and Vk
are the three neighbors of Vm

if £{*,;.*, *(G*. C) < ¿Z[h.jM *(CM, GO
GM <- G*

endif
enddo

endwhile
end

5.1. Initialization strategies
The output of this algorithm is not necessarily a global optimum. The main factor in directing convergence

towards a global optimum is the how the initialization is carried out. We can identify at least six distinct
approaches to initialization, which can be grouped into three levels of increasing likelihood that they fall into
the domain of attraction of a global optimum. Thus each internal genome can be assigned:
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"arbitrarily":
(1) a fixed, arbitrary permutation, e.g. (1,2,..., n), or

(2) a different random permutation

"reasonably":
(3) the permutation representing a nearest data genome, or

(4) the consensus of three nearest data genomes

"with much effort":
(5) by setting up and solving an initial TSP at each internal node, where the edge-weights are the average

of the corresponding edge-weights at the three neighbouring nodes, found by solving a system of
linear equations, or

(6) by setting up and solving an initial TSP at each internal node, where the edge-weights are calculated
by dynamic programming, minimizing the number of times a given adjacency has to be created or

disrupted within the tree to be present or absent, respectively, at that node.

It can be seen in optimize.tree that rather than initializing all internal nodes at once, they are initialized one

at a time, starting with an internal node with two terminal node neighbours. Once it is initialized, it is treated
as a terminal node (i.e., in extremities), and the two neighbours are disregarded, as the initialization proceeds
with another internal vertex.

In the following subsections we formalize initializations (4), (5) and (6).

5.2. Triangulation
Then we can replace the set.up.TSP instruction in optimize.tree by the following:

three,nearest

routine three,nearest
let Vh, Vj, Vk be the three vertices in extremities

closest to VM on three disjoint paths leading from Vm
define TSP for GM, based on Vh, Vj, Vk.

end

5.3. Trees of TSPs

Instead of setting up the TSP at each internal vertex as a function of the three closest previously solved
genomes, we can define a TSP on the basis of the three immediately neighboring TSPs. For each vertex

Vm € extremities, we set

vJhi(gh)
1 if gh is not in GM
0 ifg/tisinG^.

We then determine the weights for the vertices in internal as follows:

WM(gh) = -(wh(gh) + Wj(gh) + wk(gh)),

for each gh e T, where Vh, Vj and Vk are the three neighbors of VM- The weight system w can then all be

easily found by solving the system of simultaneous equations derived from all the vertices e internal
We can replace the set.up.TSP instruction in optimize.tree by the following:

average.TSP
routine average.TSP

calculate w for the vertices in the internal
based on the vertices in extremities

end
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5.4. Minimizing Adjacency Disruptions
Our third heuristic focuses first on each pair of genes in E and tries to minimize the number of times this

pair is inferred to have been directly affected by rearrangement of the genome. Dynamic programming is used
to calculate the weights for the TSP.

For any internal vertex Vm, suppose we have already calculated a genome for vertices VN+i, • • • > Vm-\
and we wish to do so for VM. We impose a direction on all edges of the tree, namely the direction leading to

Vm- Then VM has three edges leading to it, all other internal vertices have two, and leaves have none. The
dynamic programming routine included in the set-up routine below follows this direction towards VM-

adjacency.parsimony

routine adjacency.parsimony
direct all edges in E(T) towards M
do for i e extremities and all gh eT

w+(gh) <- 0 if y e G\ w+(gh) = 1 if ij i G'.
w~(gh) 4- 1 if ij e G\ w~(gh) = 0 if ij i G'.

enddo
remain 4- internal
while remain ^ <I>

find i > M, i e remain, such that for all vertices j leading to i,
j g remain

do for all gh e V
w~f(gh) 4- EV;leads tov, mm(wj(gh), 1 + wj(gh))
wf(gh) 4- Ev. leads toV¡ min(wj(gh), 1 + Wj~(gh))

enddo
remove i from remain

endwhile
do for all gh e V

wM(gh) <- wM(gh) - wM(gh)
enddo

end

5.5. The Simulations
To assess and compare the three approaches to initializing the iteration of the median algorithm, a series of

simulations were carried out. The parameters were N, the number of terminal vertices in the tree, n, the number
of genes in each genomes, and r, the total number of breakpoints between all pairs of adjacent genomes in
the tree. Here, we illustrate with the results for N = 7 and n = 20. The total number of rearrangements r was
varied from 20 to 300 in steps of 10.

For each target value of r, ten sets of simulated genomes were required. Starting with genome (1 2 • • • n) at
one vertex, we generated genomes for neighbouring vertices with an appropriate random number of rearrange-
ments until all internal and terminal vertices were assigned a genome. Each rearrangement was randomly
chosen to be a transposition or an inversion (cf. Blanchette et al, 1996) of random length.

Once all genomes were generated, the breakpoints on each edge were counted, and the simulated example
was retained only if r was the target values, until the quota of 10 examples was filled.

For each example, only the genomes from the terminal vertices served as input for each of our three
algorithms separately.
5.6. Results

It can be seen from Figure 5, that when the average number of breakpoints per edge approaches ¿n, the
algorithm tends to reconstruct evolutionary histories more parsimonious than those actually responsible for
the data. After \n, the number of reconstructed breakpoints actually levels off sharply. Note that in this and
subsequent figures in this section, all curves are smoothed by the SPLUS lowess function.

The accuracy of our initializations can be assessed in Figure 6, which gives the improvement to the objective
R obtained by the iteration step as a function of r for the three heuristics. This improvement is generally less
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of number of breakpoints generated in the input data, n = 20, N = 7.
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FIG. 7. Difference between results of adjacency.parsimony and average.TSP as a function of r, before and after
iterative improvements, n = 20, N = 7.

than j%, reaching more than 1% for the average.TSP initialization only for values of r where, as we shall
see, this routine performs relatively poorly.

Figure 7 compares the performance of the two heuristics average.TSP and adjacency.parsimony
(both outperform three.nearest) over a range of evolutionary divergence. It is striking that for small r,
adjacency.parsimony performs distinctly better, even after both initializations benefit from the iterative
improvements, while for large r it is the average.TSP which is clearly superior.

To address the question of global optimality, we count how many heuristics give the minimum solution
for R. In Figure 8, we see that (except for genomes that have diverged very little) around 1.6 heuristics, on

the average, seem to obtain the minimum. Assuming a doubly-attained minimum is a global solution (not
always true, of course), and since adjacency.parsimony and average.TSP are the ones that tend to achieve
the lowest values, we can conjecture that individually they attain global optimality about half of the time, for
this range of parameter values.

Summarizing, "much effort" paid off with one to two percent better results (i.e., fewer breakpoints over
the entire tree) for moderate to highly divergent data. The dynamic programming approach (6) leads to better
results than method (5) for moderately divergent data while the latter is superior for highly divergent data,
approaching randomness, in each case by about one half of one percent.

Once the number of breakpoints generated per tree branch reached about half the number of genes, under-
estimation begins to be manifested, rapidly worsening so that when the number of breakpoints per branch
reaches two-thirds the number of genes, this number is underestimated by about 30%.

6. UNIQUENESS IN TREE-BASED REARRANGEMENT

To further our investigation of multiple optima in reconstructed genomes, we simulated genomic rearrange-
ment in the tree in Figure 9.

We again used genomes of size 20 and generated trees containing a total of B breakpoints over all their
edges. We applied methods (4), (5) and (6) of Section 5 to calculate the multiple rearrangement for each
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FIG. 8. Number of heuristics (out of three) attaining optimal solution as a function of number of breakpoints generated
in the input data, for 10-gene, 20-gene and 30-gene genomes. N = 7.
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FIG. 9. Tree with three depths of internal vertices.

tree. When at least two heuristics found the same minimum total cost (which happened at least 70% of the
time, even for highly divergent data), we calculated the distances between the genomes reconstructed by each
method at each internal node.

This experiment was repeated 10 times (and the results averaged) for each value of B between 40 and 230.
The results appear in Figure 10.

The results of these simulations indicate that multiple solutions for peripheral nodes are relatively close to
each other for low and moderate divergence. But with 10 breakpoints per branch, on an average, somewhat
more than 200 breakpoints in all, multiple solutions could be non-negligibly far from each other—about
7 breakpoints between them on the average. The situation is progressively worse as we get deeper into the
tree, so that there are considerably more breakpoints (around 15) between two solutions for the central genome
than between two neighboring nodes on the tree.
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FIG. 10. Effect of vertex depth on dispersion of multiple optima.

7. CONCLUSIONS

This work establishes the computational feasibility of exact breakpoint analysis as a method of multiple
genome rearrangement, in contrast to the difficulties with edit distance-based approaches.

For the consensus problem on N genomes, we analyzed the diversity of optimal solutions in terms of the
breakpoint distances amongst them, as an assessment of the reliability of reconstructed gene orders. Reliability
was degraded as input genomes were increasingly rearranged, but improved dramatically with N.

For the more general breakpoint phylogeny, an exact algorithm is not available, but we tested three ini-
tializations for solving it by iterative improvement. We showed that the initializations were very precise,
within one percent or so of the best solution. The obverse of this is that the iterative step leads to a small, but
non-negligible, improvement.

One initialization worked better for low-divergence data and one is superior for high-divergence data.
Studying the rate of coincidental solutions among the three heuristics enabled us to estimate how frequently
the methods are likely to achieve global optima.

Though breakpoint distance does not directly measure the number of rearrangement events, we can still
characterize how parsimony leads to underestimation of the evolutionary divergence in the phylogeny through
which the data were generated.

In analyzing the breakpoint distances among equivalent local optima, we must conclude that non-uniqueness
remains a major consideration in genomic reconstruction, especially for the "deep" vertices in a phylogeny,
but we would conjecture that this is less of a problem in breakpoint analysis than with other approaches.

An important assumption in this work has been the fixed set of genes present in the data genomes. This is
unrealistic in many contexts, but relaxing it makes computation for exact multiple rearrangement and genomic
reconstruction (such as in the Sankoff and Blanchette (1997) solution) much more costly.
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