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4School of Information Technology and Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
5Biology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A.
6Department of Computer Science, Virginia Polytechnic Institute, Falls Church, VA 22043, U.S.A.
7Department of Biochemistry, University of Ottawa, Ottawa, K1N 6N5, Canada
8Department of Computer Science, Princeton University, Princeton, NJ 08544, U.S.A.

E-mail: {sankoff, amun010, zyang009, zadam008, rwarr059}@uottawa.ca; chunfang313@gmail.com; vchoi@cs.vt.edu;

qzhu@princeton.edu

Received September 1, 2009; revised December 14, 2009.

Abstract As genomes evolve over hundreds of millions years, the chromosomes become rearranged, with segments of some
chromosomes inverted, while other chromosomes reciprocally exchange chunks from their ends. These rearrangements lead to

the scrambling of the elements of one genome with respect to another descended from a common ancestor. Multidisciplinary
work undertakes to mathematically model these processes and to develop statistical analyses and mathematical algorithms
to understand the scrambling in the chromosomes of two or more related genomes. A major focus is the reconstruction of
the gene order of the ancestral genomes.
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1 Introduction

The advent of nuclear genome sequencing in eukary-
otes, especially in mammals[1-2], lent great impetus
to the field of comparative structural genomics. Du-
ring the previous decade, computer scientists had been
preparing for this era by developing analyses and algo-
rithms for comparing whole genomes, illustrating them
on smaller genomes such as those of mitochondria[3-4],
chloroplasts[5] and prokaryotes[6], and using various
sets of ordered markers, usually genes, as the input
data, rather than raw sequence.

The central result during this period was the
polynomial-time Hannenhalli-Pevzner algorithm[7] for
sorting, in a minimum number of steps, a signed genome
(i.e., a signed permutation of 1, 2, . . . , n) into the iden-
tity permutation by successively reversing contiguous
fragments of the permutation, where each reversal also
switches the polarity of each term in the fragment. This
allowed the rapid calculation of the genomic distance
d between two genomes, since a reversal models the

major chromosomal rearrangement process in biology,
inversion. At the same time, Caprara[8] showed that
most efficient sorting by reversals of unsigned permuta-
tions is an NP-hard problem. These results responded
to a question that had been raised in various forms in
the 1980s[9-10] and even earlier[11]. Extensions of the
Hannenhalli-Pevzner approach[12-13] allowed the com-
parison of multi-chromosomal genomes, by modelling
the biological processes of reciprocal translocation as
well as chromosome fusion and fission.

During this time as well, the first methods of recon-
structing ancestral gene orders were proposed. Using
the breakpoint metric b, essentially the number of ad-
jacent genes in one genome not adjacent, or at least
not with the same sign, in the other, it became possi-
ble to infer the optimal ancestral genomes in a given
phylogeny[14] for moderate size genomes. And using
the genomic distance d, El-Mabrouk devised an exact
polynomial-time algorithm to reconstruct the ancestral
form of present-day descendants of a tetraploidization,
or whole genome doubling, event[15-16].
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One task that becomes disproportionately more dif-
ficult in comparing nuclear genomes, with typically
3 × 109 DNA base pairs in mammals, than with mi-
tochondrial (104 ∼ 105 base pairs) or chloroplast (typi-
cally 1 ∼ 3×105) genomes is that of identifying the cor-
responding elements (homologs, orthologs, ancestrally
related) to compare. Not only is it extremely difficult
and tedious just to identify the genes in a genome, and
to distinguish which of potentially many approximate
copies of a gene in one genome corresponds to which in
the other, but most of the genome is not occupied by
genes at all.

There are two types of response to this difficulty.
One is to try to systematically identify conserved seg-
ments: Homologous lengths of sequence in the two
genomes, using alignment techniques and without re-
gard to the genetics or function (i.e., whether the seg-
ment contains genes, parts of genes, or regulatory el-
ements), and then to treat these segments as ordered
markers in the comparative analysis. This was first
done in 2003 by Pevzner and Tesler[17] focusing on
highly conserved (anchor) regions of sequence, attain-
ing thresholds of length and similarity. At the same
time Kent et al.[18], in building the UCSC genome
browser[19], applied a new, nested alignment procedure
over all regions of the genome sequence, which could
then be analysed at various levels of resolution. Un-
fortunately, sequence-based approaches to comparative
structural genomics not firmly anchored in genetic cor-
respondences are not at all robust to changes in thresh-
old or resolution parameters[20-21].

The second way of responding to the difficulty in
homology identification is simply to wait for the re-
sult of genome annotation, i.e., the systematic expert
identification of genes and other sequence elements in
all the genomes being compared. This task may take
years to complete, a frustratingly long delay for those
eager to do comparisons, but recent advances in auto-
mated or at least computer-assisted gene finding and
annotation mean that relatively accurate gene identifi-
cation is increasingly available and that homologies can
be quickly established, enabling genomic distance cal-
culations soon after sequence assembly.

The advances and challenges described in this paper
will be phrased in terms of the second approach. We
will characterize genomes as gene orders, and often use
the terms interchangeably. We will not delve further
into the separate question of identifying genes within a
genome, though we will have to address aspects of the
question of how to treat spatially dispersed multicopy
or paralogous genes in one genome with respect to their
homologous counterparts in another genome, a problem
which is discussed in depth by Tao Jiang elsewhere in

this issue[22].
The mathematical details of some of the work dis-

cussed here appears in [23], while the field of combina-
torics and algorithms for genome rearrangement is the
topic of an excellent survey volume by Fertin et al.[24]

In the next section, we sketch various kinds of genomes
and how they are formalized as well as the basic chro-
mosomal rearrangement processes and how they are de-
fined mathematically. This leads to various concepts of
genomic distance.

In Section 3 we discuss the so-called median prob-
lem as the basis for the reconstruction of genomes at the
ancestral nodes of phylogenetic trees and in Section 4
we reconstruct the diploid ancestor whose tetraploidiza-
tion (whole genome duplication) is apparent in the
gene complement of its present-day descendants. Then
we introduce guided genome halving, which improves
the accuracy of this reconstruction. Moreover, where
gene order phylogenies have been hitherto been con-
fined to diploid genomes, guided halving enables poly-
ploid genomes to be incorporated in a principled way
into these phylogenies.

In Section 5, we examine various ways in which the
available data may fall short of the usual requirements
of complete and accurate linear gene orders along each
chromosome. For certain types of data only partial or-
dering of the genes is available, and we discuss how
to linearize the corresponding DAG (directed acyclic
graph) through genome comparison. Another problem
is due to incompletely assembled genomes, where the
linear order on a chromosome may be fragmented into
many smaller linear orders called contigs. We examine
the consequences for gene order phylogenetics of treat-
ing each of these contigs as if it were a complete chro-
mosome. Finally, gene order data may contain errors,
so that a proportion of genes are in the wrong place on
a chromosome or even on the wrong chromosome. We
show a way of detecting these errors and purifying the
data through genome comparison.

Some genomes may be so thoroughly scrambled dur-
ing evolution that it may not be meaningful to attempt
to reconstruct the entire rearrangement history separat-
ing two genomes. This may be particularly true of some
prokaryotic comparisons. Instead we search for groups
of genes which are significantly closer to each other in
both genomes than would be the case by chance. Sec-
tion 6 studies ways of defining, detecting and testing
these gene clusters.

2 Genomes, Distances and Evolutionary Time

In this section, we first will sketch various
formalizations of the biological concepts of chromosome
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and genome, more specifically the mathematical ab-
stractions of genome content, chromosome shape, gene
sign and gene order. We introduce comparative ge-
nomics in terms of breakpoints and the breakpoint dis-
tance. Then we will define evolutionary operations that
affect genomes and discuss how different combinations
of genome structure and permitted evolutionary oper-
ations result in computationally different models.

We introduce genomic rearrangement distances and
explain how they apply to different kinds of genomes.
We then explore the dependance of expected genomic
distance on time, or rather on the number of evolution-
ary steps under the constant rate-of-change hypothesis.
As genomes diverge over time, measures evaluating the
differences between these genomes increase. Even in
the simplest model, this increase cannot be linear in-
definitely over time, since any such measure will have
a maximum value, typically the expected difference be-
tween two randomly permuted genomes.

2.1 Genomes

We start with a set G of distinct elements called
genes. A gene g is represented by its two ends, its head
gh and a tail gt. (In biochemical terms, the heads may
correspond to the 5′ ends of the genes and the tails the
3′ ends, or vice-versa.) An adjacency is an unordered
pair of gene ends, generally but not necessarily from
different genes; a genome is a set of adjacencies on G,
where no gene end is in more than one adjacency. A
gene end that is not in any adjacency is called a telo-
mere. Consider a gene g, together with any gene h
having an end adjacent to an end of g (there may be
2, 1 or 0 such h), together with any other gene k hav-
ing an end adjacent to the other end of h, and so on,
accumulating genes by transitivity of adjacency. The
subset of G thus constructed is called a chromosome.
If a chromosome contains two telomeres it is a linear
chromosome, if it contains no telomere it is circular. A
genome with only linear chromosomes is called a linear
genome.

A genome with only one chromosome is called
unichromosomal; if it has more than one chromosome
it is multichromosomal.

As well as the representation in terms of sets of ad-
jacencies, a genome can also be represented as a set of
strings, by writing the genes for each chromosome start-
ing with one that has a telomeric end and adding genes
according to the adjacencies of their ends. Each gene g
whose tail is written first is considered to have positive
polarity, while a gene whose head is written first has
negative polarity (−g). In this way, unichromosomal
genomes are equivalent to signed permutations by virtue
of the head-tail polarity of the gene ends, irrespective

of whether they are linear or circular. For each linear
chromosome, there are two possible equivalent strings,
according to the arbitrary chosen telomere. One string
is obtained from the other by reversing the order and
switching the signs of all the genes. For circular chro-
mosomes, there are also two possible circular string rep-
resentations, according to the direction in which the
genes are traversed.

Although we have formulated genomes in terms of
sets of distinct genes, in biological reality there are often
many copies, identical or almost so, of the same gene in
a genome. Incorporating this fact into the mathema-
tics of genome comparison and genome reconstruction
complicates the formulation of problems and inevitably
worsens their complexity. For this introductory essay,
therefore, we will keep largely to the single-copy genes
case, and leave it to the reader to explore the volu-
minous literature (starting with [22]) that attempts to
generalize to the multicopy case. We will touch on the
latter occasionally, especially in Section 4 on genome
halving, a context where there are exactly two copies
of each gene.

2.2 Breakpoints

For two genomes on the same set G containing n
genes, suppose {x, y} is an adjacency in one of the
genomes but not the other. This is called a breakpoint.

Let a be the number of adjacencies in common in
the two genomes, and e be the number of telomeres in
common. Then the breakpoint distance is

dBP(Π ,Γ ) = n− a− e

2
. (1)

This definition from [23], applies to the comparison of
all the types of genomes mentioned in Subsection 2.1.
It may differ from other definitions slightly, largely in
terms of how it accounts for differing sets of telomeres.

2.3 Operations

The classical genetics notions of inversion, transpo-
sition and reciprocal translocation of chromosome seg-
ments, as well as chromosomal fission and fusion, are
formalized in such papers as those by Tesler[13], Yan-
copoulos et al.[25], and Bergeron et al.[26] Briefly, us-
ing the string representation of a chromosome, e.g.,
h1 · · ·hl, where a pair of successive genes huhu+1 are
loosely termed an adjacency if their gene ends consti-
tute an adjacency, we can illustrate:

• an inversion (implying change of sign, i.e., change
of strand) of a chromosomal segment:

h1 · · ·hu · · ·hv · · ·hm → h1 · · · −hv · · · − hu · · ·hm,

disrupting the two adjacencies hu−1hu and hvhv+1,
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• a transposition of a chromosomal segment:

h1 · · ·hu · · ·hv · · ·hw · · ·hm →
h1 · · ·hu−1hv · · ·hwhu · · ·hv−1hw+1 · · ·hm,

disrupting the three adjacencies hu−1hu, hv−1hv and
hwhw+1,

• a reciprocal translocation between two chromo-
somes:

h1 · · ·hu · · ·hl, k1 · · ·kv · · · km →
h1 · · · kv · · · km, k1 · · ·hu · · ·hl,

disrupting the two adjacencies hu−1hu and kv−1kv,
• a chromosome fission:

h1 · · ·hvhv+1 · · ·hl → h1 · · ·hv, hv+1 · · ·hl,

disrupting the adjacency hvhv+1, and
• the fusion of two chromosomes:

h1 · · ·hl, k1 · · · km → h1 · · ·hlk1 · · ·km.

The genomic distance is the minimum number of ope-
rations of these types (or some specified subset of types)
required to transform one of the genomes being com-
pared into the other. The authors mentioned above
also provide rapid algorithms for deriving the distance,
given genomes composed of ordered chromosomes rep-
resented by the same n genes, markers or segments in
the two genomes, assuming the strandedness, or read-
ing direction, of each gene is known.

2.4 Rearrangement Distance

A double-cut-and-join (DCJ) is an operation acting
on two adjacencies {p, q} and {r, s}, deleting them and
replacing them by {p, r} and {q, s} or by {p, s} and
{q, r}. Also it can act on an adjacency {p, q} and a
telomere r to produce the adjacency {p, r} and a telo-
mere q or the adjacency {q, r} and a telomere p. It can
also fuse two telomeres to create an adjacency or fission
an adjacency to create two telomeres.

A DCJ can have the effect of inverting an interval
of a genome, fission one chromosome into two, fusing
two chromosomes into a single one, or producing a re-
ciprocal translocation between two chromosomes. Two
consecutive DCJ operations may result in a block inter-
change: two arbitrary segments of the genome exchange
their positions, a particular case is that of a transposi-
tion, for which the two segments are contiguous. The
DCJ operation is thus a very general framework. It was
introduced by Yancopoulos et al.[25] and was simplified
by Bergeron et al.[26]

The minimum number of DCJ operations needed to
transform one genome into another (on the same set

of genes) is the DCJ distance dDCJ. It can be quickly
calculated by defining a bipartite graph where the ad-
jacencies and telomeres of one genome constitute the
vertices on one side of the graph and the adjacencies
and telomeres of the other genome are the opposing
set of vertices. An edge is drawn between two vertices
(from the two genomes) if they are both derived from
adjacencies or telomeres containing a same gene end.
Then, it is proved in [26],

dDCJ = n− c− i

2
(2)

where c is the number of cycles in the graph and i is
the number of paths with an odd number of edges.

The reversal/translocation distance was introduced
by Hannenhalli and Pevzner[12], and is equivalent to the
DCJ distance constrained to linear genomes.

For a linear genome, a linear DCJ operation is a
DCJ operation that results in a linear genome. This
allows reversals, chromosome fusions, fissions, and re-
ciprocal translocations. Other DCJs that create tem-
porary circular chromosomes, are not allowed, so that
transpositions (and other block interchanges) may re-
quire three operations instead of two. Chromosomes
fusions and fissions are particular cases of transloca-
tions in this framework. We call the minimum num-
ber of linear DCJ operations that transform one linear
genome into another RT distance and we denote it by
dRT. This distance can be calculated rapidly with for-
mulae analogous to (2), but which have rather complex
form[12-13].

2.5 Relation Between True and Inferred
Distance

Even assuming that rearrangements occur at a rela-
tively constant rate over time and are randomly posi-
tioned in the genomes, we have no simple, exact pro-
bability relationship between the actual number τ of re-
arrangements after a certain time t has elapsed and the
number of rearrangements d inferred by applying the
genomic distance algorithms to compare the initial and
the derived genomes[27-29]. We can, however, model the
proportion of adjacencies that will be disrupted versus
the proportion that will remain intact after τ random
rearrangements. For each of the adjacencies in the ori-
ginal genome, the probability that it will remain undis-
rupted after τ rearrangements is (1 − λ/n)τ or appro-
ximately e−λτ/n, where λ depends on the proportions
of the various kinds of rearrangements in the model.
Thus the number of disrupted adjacencies, the break-
point distance, will be approximately n(1 − e−λτ/n).

In analogy to the closely related breakpoint distance,
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we suggested[30] that as a first approximation

E
(d
n

)
≈ 1 − e−λτ/n, (3)

where n is the number of genes in both genomes, and λ
is a constant. If we knew λ, we could estimate τ using

τ̂ = −n
λ

log
(
1 − d

n

)
. (4)

In fact, the relationship between the actual and in-
ferred numbers of rearrangements (not shown) deviates
considerably from the one-parameter model in (3) for
both small and large τ . We thus add a quadratic cor-
rection to the linear term in the exponent, so that the
model becomes

E
( d
n

)
≈ 1 − e−λ1τ/n−λ2(τ/n)2 , (5)

in which case the estimate of τ becomes

τ̂ =
n

2λ2

(
− λ1 +

√
λ2

1 − 4λ2 log
(
1 − d

n

) )
. (6)

To estimate the parameters λ1 and λ2, we simulated
100 pairs of genomes with almost 9000 genes and τ up
to 9000 random rearrangements to derive one genome
from the other. We then used a DCJ algorithm[26] to
obtain an estimate of E(d) from the genomes.

Fig.1 shows the relationship between τ and both
E(d) and τ̂ , using the values λ1 = 0.846 and λ2 = 0.576,
found by a least sum of squares criterion applied to the
set of τ and τ̂ values. The way τ and d are normalized
means that the parameters should not be very sensitive
to n.

Fig.1. Predicted (curve) and observed (dots) values of genomic

distance d, and inferred (open dots) values of τ̂ versus true (di-

agonal line) values.

We found that for the large values of n we stud-
ied, the model in (5) fits the simulated data, including
for large and small values of τ , better than the purely
curve-fitting model in [29], which also has two parame-
ters.

3 The Median and the Small Phylogeny
Problem

The evolution of species, especially eukaryotic
species, is most often represented by a phylogenetic
tree. The problem of reconstructing or inferring a tree
from data on present-day species may be conceptually
(and often methodologically) separated into two parts.
The large phylogenetic problem is one of finding the
topology, or branching pattern, of the tree connecting
the given species represented by the leaves, or terminal
nodes, of the tree. The small phylogenetic problem is
the inference, for a given tree, of the ancestral species
identified with each of the non-terminal nodes of the
tree. In this section we will deal with the small problem
in the case where the data on the present-day species
are the orders of the genes on their chromosomes.

There are a variety of aspects of gene order that can
be rapidly reconstructed, e.g., in [31-33], while moni-
toring the linearity of the reconstructed chromosomes
through maintenance of bandwidth or a PQ-tree struc-
ture.

Here we will concentrate on solving the global prob-
lem by minimizing total branch length over a phy-
logeny while reconstructing optimal ancestral gene or-
ders. This approach has been recently proven to be
superior to local techniques when confronted with a
manually validated ancestor gene order[33]. Formally,
let P be a phylogeny where each of the Nt terminal
nodes is labelled by a known gene order on the same n
genes, and let d be a metric on the set of gene orders.
Each branch of P may be incident to at most one ter-
minal node and at least one of the Na ancestral nodes.
Each non-terminal node is of degree at least three. We
want to reconstruct R = (G1, . . . , GNa), a set of gene
orders at the ancestral nodes that minimize

L(R) =
∑

branch XY ∈P
d(XY ). (7)

We use a hill-climbing procedure to find a local op-
timum for L(R). This is illustrated in Fig.2. The
archetypical (unrooted) phylogeny has three or more
leaves and exactly one non-terminal node, as shown in
Fig.2(a). The problem becomes that of reconstructing a
single gene order M , the sum of whose distances to the
given gene orders is minimal. This problem has a rel-
atively long history, with an early algorithm[34] for the
breakpoint median based on dBP. Technical speedups
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were described by Cosner et al.[5] and incorporated into
the GRAPPA software[35]. Siepel[36] and Caprara[37]

gave exact median algorithms for small instances of dRT

and Bourque[38] released a heuristic web application for
this version of the problem. Much progress has been
made recently on exact algorithms capable of handling
large or moderate size genomes[39-40] for dDCJ.

Fig.2. (a) Median problem: Given genomes A, B, C, find M such

that d(A, M)+ d(B, M)+ d(C, M) is minimized. (b) Example of

unrooted phylogeny with given present-day genomes at terminal

nodes (dark dots) and genomes to be inferred at the ancestral

nodes (white dots). (c) Inference of genomes at ancestral nodes

found by iterating through the ancestral vertices, solving a me-

dian problem at each step.

For most formulations, in terms of different kinds
of genome and different distances, the median problem
is known (or thought) to be NP-hard; recently, how-
ever, for the case of breakpoint distance on multichro-
mosomal genomes not restricted to be linear, Tannier
et al.[23] have given a polynomial-time algorithm, and
this has been implemented[41] as a rapidly executing
program.

Focusing on the more general small phylogeny pro-
blem with more than one ancestral node, the current
heuristic strategy is based on the ability of the me-
dian algorithm to achieve a fairly accurate solution in
a reasonable time on a large proportion of instances.
As illustrated in Fig.2, the phylogeny at Fig.2(b) is de-
composed on Fig.2(c) into a set of overlapping median
configurations, with one non-terminal, i.e., ancestral,
node as median, and all its (three or more) co-linear
nodes, terminal or non-terminal. The heuristic consists
of solving each of the median problems in turn, updat-
ing the median at each step only if it diminishes the sum
of the lengths of the branches incident to the median,
and iterating. This eventually converges to a local min-
imum. The quality of the solutions may depend on the
initialization of the ancestral gene orders[14], e.g., by

random gene orders, or by copying some of the present-
day gene orders to the ancestral nodes. It may also
depend on various techniques for escaping from local
minima[42].

4 Genome Halving

4.1 Whole Genome Duplication and Halving

Many genomes have been shown to result from an
ancestral doubling of the genome, often called WGD
for “whole genome duplication”, so that every chro-
mosome, and hence every gene, in the entire genome
is duplicated simultaneously. Evidence for the effects
of genome duplication has shown up across the eukar-
yote spectrum, from protists, to yeast, fish, amphibians
and even mammals. Genome duplication is particularly
prevalent in plants.

Following WGD, rearrangements disrupt the gene
order and may transfer the genes from any one chro-
mosome onto other chromosomes. Eventually the chro-
mosomal neighbourhood of a gene need bear no resem-
blance to that of its duplicate. The present-day genome
can be decomposed into a set of originally duplicate
genes dispersed among the chromosomes. Comparisons
of genomes consisting of duplicate genes is a special case
of the more general problem of genome rearrangement
algorithms allowing paralogy.

The genome halving problem asks, given a genome
T with two copies of each gene, distributed in any
manner among the chromosomes, to find the “ances-
tral” genome, written A⊕A, consisting of two identical
halves, i.e., two identical sets of chromosomes with one
copy of each gene in each half, such that the rearrange-
ment distance d(T,A ⊕ A) between T and A ⊕ A is
minimal. Note that part of this problem is to find an
optimal labelling as “1” or “2” of the two genes in a pair
of copies, so that all n copies labelled “1” are in one half
of A⊕A and all those labelled “2” are in the other half.
The genome A represents the ancestral genome at the
moment immediately preceding the WGD event giving
rise to A⊕A.

For dRT, a linear-time solution has been available for
some time[15-16]. This has been adapted for dDCJ

[43-44],
an application of DCJ that showcases its simplicity and
elegance as a measure of genomic divergence. A rapid
halving algorithm is also available for dBP

[23].
Between the computationally complex problems of

gene order comparison allowing arbitrarily many copies
of each gene[45], and the computationally tractable
genome halving, lies the biologically plausible problem
of partial genome halving. Here only part of the
genome, e.g., one or several chromosomes, has been
doubled. Whether some formulation of partial genome
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halving could be solved efficiently is an interesting open
problem.

4.2 Guided Halving

A problem with solutions to the genome halving
problem is that it usually has many, very diverse, so-
lutions. For biological purposes it would be preferable
to be able to use some additional, or external, infor-
mation to choose amongst these solutions. Thus the
guided genome halving problem[46] asks, given T as well
as another genome R containing only one copy of each
of the n genes, find A so that d(T,A⊕A) + d(A,R) is
minimal. The solution A need not be a solution to the
original halving problem.

Nevertheless, the solution of the guided halving
problem is often a solution of the original halving prob-
lem as well, or within a few rearrangements of such a
solution[46-49]. This has led us to define a constrained
version of the guided halving problem, namely to find A
so that A⊕A is a solution to the original halving prob-
lem and d(T,A ⊕ A) + d(A,R) is minimal. This has
the advantage that a good proportion of the compu-
tation, namely the halving aspect, is guaranteed to be
rapid and exact, although the overall algorithm, which
is essentially a search among all optimal A, remains
heuristic.

4.3 Genome Aliquoting

Whole genome doubling is not the only process that
results in multiple copies of each chromosome in a
genome. Hexaploidy, octaploidy, etc., are conditions
where the genome has been tripled, quadrupled, etc.
Warren has generalized the genome halving problem to
one of genome aliquoting[50]:

Given a genome T with p � 2 copies of each gene,
distributed in any manner among the chromosomes, to
find the “ancestral” genome, written A ⊕ A ⊕ . . . ⊕ A,
consisting of p identical parts, i.e., p identical sets of
chromosomes with one copy of each gene in each part,
such that the rearrangement distance d(T,A⊕A⊕ . . .⊕
A) is minimal. Part of this problem is to find an op-
timal labelling as 1, 2, . . . or p of the p copies of each
gene, so that all n copies labelled “1” are in one part
of A ⊕ A ⊕ . . . ⊕ A and all those labelled “2” are in a
separate part, and so on. The genome A represents the
ancestral genome at the moment immediately preceding
the polyploidization event giving rise to A⊕A⊕ . . .⊕A.

Warren also provided an efficient algorithm for the
solution of genome aliquoting[50], though the comple-
xity of this problem has not yet been established.

5 Kinds of Data

The analyses in the preceding subsections require

complete and accurate linear gene orders along each
chromosome. Experimental research, however, may
sometimes only result in a partial ordering of the genes.
Another problem is due to incompletely assembled
genomes, where the linear order on a chromosome may
be fragmented into many smaller linear orders called
contigs. Finally, gene order data may contain errors,
so that a proportion of genes are in the wrong place on
a chromosome or even on the wrong chromosome. In
this section we describe how the requirements of rear-
rangement theory may be reconciled with these kinds
of data by using the rearrangement analysis itself to
upgrade the imperfect data. Rather than reconstruct-
ing ancestral gene orders, then, we are reconstructing
aspects of the structure of present-day ones.

5.1 Partially Ordered Genomes

The representation of a genome as a set of totally
ordered chromosomes must often be weakened in the
case of real data, where experimental data only suffice
to partially order the set of genes on a chromosome.
Maps of genes or other markers produced by recombi-
nation analysis, physical imaging and other methods,
no matter how highly resolved, inevitably are missing
some (and usually most) genes or markers and fail to
order some pairs of neighbouring genes with respect to
each other. Even at the ultimate level of resolution,
that of genome sequences, the application of different
gene-finding protocols usually gives maps with different
gene content.

The biological concepts and usual computational
methods of genome rearrangement, however, pertain
only to totally ordered sets of genes and are meaning-
less in the context of partial orders. Our approach is to
extend genome rearrangement theory to the more gen-
eral context where gene order knowledge is represented
by partial orders rather than total orders, i.e., directed
acyclic graphs (DAGs) instead of linear graphs[51-52].
The use of DAGs reflects uncertainty of the gene order
on chromosomes in the genomes of many advanced or-
ganisms. This may be due to lack of resolution, where
several genes are mapped to the same chromosomal po-
sition, to missing data from some of the datasets used
to compile a gene order, and/or to conflicts between
these datasets.

We construct the chromosomal DAGs for each
species from two or more incomplete datasets, or from
a single low-resolution dataset. The frequent lack of
order information in each dataset, due to missing genes
or missing order information, is converted into parallel
subpaths within each chromosomal DAG in a straight-
forward manner.

A linear map of a chromosome that has several genes
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or markers at the same position π, because their order
has not been resolved, can be reformulated as a partial
order, where all the genes before π are ordered before
all the genes at π and all the genes at π are ordered
before all the genes following π, but the genes at π are
not ordered amongst themselves. This is illustrated in
Fig.3.

Fig.3. Construction of DAGs from individual databases each con-

taining partial information on genome, due to missing genes and

missing order information, followed by construction of combined

DAG representing all known information on the genome. All

edges directed from left to right.

For genomes with two or more gene maps con-
structed from different kinds of data or using diffe-
rent methodologies, there is only one meaningful way of
combining the order information on two (partially or-
dered) maps of the same chromosome containing differ-
ent subsets of genes. Assuming there are no conflicting
order relations (a < b, b < a) nor conflicting assign-
ments of genes to chromosomes among the datasets (as
in the datasets on our simulated genomes), for each
chromosome we simply take the union of the partial
orders, and extend this set through transitivity. All
the partial order data on a chromosome can be repre-
sented in a minimal DAG whose vertex set is the union
of all gene sets on that chromosome in the contributing
datasets, and whose edges correspond to just those or-
der relations that cannot be derived from other order
relations by transitivity. The outcome of this construc-
tion is illustrated in Fig.3.

The rearrangement problem is then to infer a trans-
formation sequence (translocations and/or reversals)
for transforming a set of linearizations (topological
sorts), one for each chromosomal DAG in the genome
of one species, to a set of linearizations of the chromo-
somal DAGs in the genome of another species, minimiz-
ing the number of translocations and reversals required.

A DAG can generally be linearized in many differ-
ent ways, all derivable from a topological sorting rou-
tine. All the possible adjacencies in these linear sorts
can be represented by the edges of a general directed
graph (DG) containing all the edges of the DAG plus
two edges of opposite directions between all pairs of
vertices, which are not ordered by the DAG. This is
illustrated in Fig.4.

Comparison of DAGs for genome comparison are
generally hard problems[53], but considerable work has
been done on heuristics[51-52], approximations[54] and
generalizations[53].

Fig.4. Edges added to DAG to obtain DG containing all lineariza-

tion as paths (though not all paths in the DG are linearizations

of the DAG!). Each arrow represents a set of directed edges, one

from each element in one set to each element of the other set.

5.2 Fragmented Gene Orders

The sequencing coverage of many genomes is not suf-
ficient to produce completely assembled genomes. In-
stead the published and archived data remain in con-
tig form, i.e., continuous sequence of (usually much)
smaller length than a chromosome. The price paid for
increasing phylogenetic coverage in genome sequencing
is the decreasing sequence coverage for each genome.

While such data may be adequate for many types
of comparative genomic studies, they are not directly
usable as input to genome rearrangement algorithms,
since these algorithms require whole genome data, i.e.,
complete representations of each chromosome in terms
of gene order, conserved segment order, or some other
marker order, in order to calculate the rearrangement
distance d between two genomes. Items whose chromo-
somal location is unknown cannot be part of the input.

Is there any way to use genome rearrangement al-
gorithms to compare genomes available in contig form
only[49,55-56]? Our suggestion[30] is to use the contigs
directly in the rearrangement algorithms as if they were
chromosomes. This biases the distance because it now
counts extra fusion/fission operations necessary to com-
pare genomes with different numbers of chromosomes
and fragments of chromosomes. This bias must be cor-
rected if, for example, we wish to use the results in a
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distance matrix to input to a phylogenetic analysis.
Suppose we have one completely assembled genome

B and another, A, in contig form only. The basic idea
is that if we treat each contig as a chromosome, a re-
arrangement algorithm will automatically carry out a
number of “fusions” to assemble the χA contigs in A
into a small number of inferred chromosomes equal to
the number χB in B, in calculating d.

Thus, when we use a rearrangement algorithm to
compare a genome A in contig form with an assembled
genome B, obtaining a preliminary distance d′, it may
seem appropriate to correct this to

d = d′ − (χA − χB). (8)

However, we cannot simply substitute correction (8)
into (4) or (6) to estimate τ . Even if the number C
of contig fusions is fixed, we know that these fusions
are done in such a way as to minimize d′. To take ac-
count of this, we should only remove a proportion α of
C = χA − χB from d′. The natural hypothesis is that
the effect of the C fragmentation operations creating C
extra contigs would have the same effect as the addition
of C of any other types of rearrangement to the genome,
namely increasing d by approximately d E(d)

dτ C.
To verify this, Muñoz[30] undertook a series of si-

mulations, starting from an initial genomeB containing
8867 genes (to mimic empirical data from Drosophila)
in χB = 6 chromosomes, generating 100 rearranged
genomes, each through τ random rearrangements ap-
plied to B to produce a new genome, and each then
fragmented into χA contigs. The average results for d′

are summarized in Fig.5(a). First the linearity of the
response to increasing χA is clear, indicating that (8)
should be replaced by

d = d′ − α(τ)(χA − χB), (9)

where α(τ) is a decreasing function of the number of
rearrangements τ . As can be seen from Fig.5(b) this
decrease only approximately parallels the theoretical
derivative of d.

Given d′, then, we can solve (5) and (9) simultane-
ously to find τ and d, since n, λ1, λ2, χA and χB are
known, as is the dependence of α on τ .

A similar analysis can be carried out when both
genomes are given in contig form.

5.3 Noisy Genomes

With some methodologies, the construction of gene
orders is very vulnerable to errors. A typical problem
involves ambiguous homology or paralogy, due to WGD
and other duplication processes, leading to the risk of

Fig.5. For genomes generated by τ = 1000, 3000, 6000 or 8000 re-

arrangements, broken into χ = 100, 200, . . . , 1000 contigs: (a) the

relationship between uncorrected genomic distance d′ and χ and

equations of trend lines. (b) The parameter α as a function of τ

(filled dots and dotted line). Solid line represents the derivative

of E(d) in (5), while the open dots represent the simulated values

of the derivative, calculated from the data presented in Fig.1.

matching up inappropriate pairs of genes as orthologs
in the two genomes[22]. These problems tend to
artifactually disrupt long runs of consecutive genes in
both genomes, and increase the number of shorter runs,
often consisting of only one or two genes.

When many rearrangements have intervened since
the common ancestor, it may be unclear whether any
particular one of the increasing number of short runs is
due to error or to rearrangement. These considerations
suggest the principle that inferences that depend on the
position of a single gene should not be given as much
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weight as inferences that are supported by longer runs
of genes.

In [57-58], we proposed the following strategy: First,
construct a set of pre-strips, which are certain short
common subsequences of one chromosome from each
genome; second, extract from this set a subset of mutu-
ally compatible (non-intersecting) pre-strips containing
a maximum number of genes; third, add to this sub-
set any genes that do not increase the rearrangement
distance between the gene orders; fourth, assemble the
runs of genes.

First we define strips, pre-strips and pure strips.
Consider any l � 2 consecutive contiguous genes on a
chromosome in one genome. If the same l genes are con-
secutive on a chromosome in the other genome, with the
same (or reverse) order and with each gene having the
same (or opposite) orientation in both genomes, they
constitute a forward strip (reverse strip) of length l.

We will search for pre-strips in the two genomes,
relying on the subsequent analyses to eliminate the dis-
rupting genes and thus reveal the “underlying” strips.
This is illustrated in Fig.6. A pre-strip P is a common
subsequence, or a reverse common subsequence, of the
genes on the two chromosomes, such that there is no
other gene of appropriate orientation on both chromo-
somes that is between two successive genes in P . For
example, if AB is a pre-strip, then there does not exist
C such that ACB is a pre-strip. A pre-strip satisfies the
same definition as a strip, except that the genes need
not be contiguous. A pre-strip that is a strip in the
original genome data, and is not contained in another
strip, is called a pure strip.

Remark. Strips are defined relative to the current
state of the two genomes, either before, during or after

ORIGINAL REDUCED

Genome 1 Genome 2 Genome 1 Genome 2

abcdef lbcdpz abcd lbcdz

lmnoprq -x-q-o-m lmoq -q-o-m

wxyz we-fry wyz wy

na a

Pre-strips Pure strip Strips Singletons not

bcd, bc, cd, bcd bcd, moq, wy in pre-strips

moq, mo, oq, but compatible

wy, lp a, l, z

Common subsequences Discarded as noise

not pre-strips e,f,n,p,r,x

bd, mq

Fig.6. Strips and pre-strips. “-” indicates different orientation

markers in two genomes.

reducing their size, but pre-strips and pure strips are
defined in terms of the original genome data only.

Maximal Strip Recovery (MSR) Problem: Given two
genomes as described above, discard some subset of the
genes, leaving only genes in disjoint strips S1, . . . , Sr

of lengths w1, . . . , wr, respectively, in the genomes thus
reduced, such that

∑r
i=1 wi is maximized.

We say two pre-strips P and Q are in conflict if
they share at least one gene or if one pre-strip, say P ,
contains a gene between two successive genes, in either
genome, in the other pre-strip, Q. Otherwise P and Q
are compatible.

The MSR problem corresponds to our previously
stated goal of constructing a set of compatible strips
containing as much of the data as possible.

Every pre-strip P has a unique representation as a
string of p’s and 1’s, where a p represents a pure strip
and a 1, called a singleton, represents a marker not in
a pure strip. Moreover,

Proposition 5.1. Any pre-strip can be uniquely
represented by a sequence of terms of form p, 11, 1p,
p1, 111 and 1p1.

Proposition 5.2. All possible strips that can be
formed by the deletion of genes from two genomes, and
that can be part of a solution to the MSR problem, are
pre-strips of these genomes.

Consequently, it suffices to consider only pre-strips
of the forms mentioned in Proposition 5.1. All such
pre-strips can be calculated by an algorithm requiring
O(n4) time in the worst case. In practice, the running
time is far less.

Once we have these two propositions, one way to find
a solution to the MSR problem is to create a compatibi-
lity graph with the pre-strips as vertices, weighted
by the number of genes in them, and edges between
compatible pre-strips, followed by the application of
a Maximum Weight Clique (MWC) algorithm. We
implemented recent versions of MWC[59-60] and found
we could solve realistic versions of the MSR for sev-
eral hundred genes and pre-strips only if we restricted
the elements of pre-strips to be relatively close on the
chromosome[57].

Another approach to MSR is via the conflict graph,
which is simply the complement of the compatibility
graph, and a maximum weight independent set (MWIS)
problem. We found that by taking advantage of the
source of the incompatibilities in the chromosome-based
data, we could effect a natural decomposition of the
graph into connected components that are mostly in-
terval graphs, or slight distortion of interval graphs.
Because efficient algorithms are available for MWIS on
interval graphs, this allows us to solve relatively large
instances of the problem extremely efficiently[58].
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A number of papers have recently proposed genera-
lizations of MSR and analyzed its complexity[61-64]. It
would be of great interest if this approach were inte-
grated with sequence level methods of identifying or-
thologous segments or anchor regions[17-18].

6 Generalized Gene Adjacency

Given two highly diverged gene orders, it may be
difficult to decide if some set of genes are close enough
in both genomes to infer some ancestral proximity or
some functional relationship. There are a number of
formal criteria for gene clustering in two or more or-
ganisms, giving rise to cluster detection algorithms and
statistical tests for the significance of clusters. These
methods, comprehensively reviewed by Hoberman and
Durand[65], all depend on arbitrary parameters that
control, in different ways, the number of genes and the
proximity of these genes on the chromosome in order to
be considered a cluster.

Most clustering criteria, however, do not take ac-
count of gene order within the cluster, but if the genes
in a cluster are in the same order in both genomes, they
suggest a closer relationship than if one order appears
random with respect to the other. Few attempts have
been made to take order into account. In [66] we made
the following definitions: Suppose we have identified k
genes that form a cluster in both genome A and genome
B. Number the clustered genes in genome A in order
from 1 to k (ignoring any intervening genes that are
not in the scope of the cluster in genome B) and let
g1, . . . , gk be the order of these same genes in genome
B. Similarly, re-number the genes from 1 to k accord-
ing to their order on genome B, and let h1, . . . , hk be
the order of these same genes in genome A.

1) The breakpoint metric (BAD):

BAD =#(i=1,...,k−1){|gi − gi+1| > 1}

= #(i=1,...,k−1){|hi − hi+1| > 1},

the number of times a pair of genes adjacent in the clus-
ter in one genome is not adjacent in the other. Were
genes 1, . . . , k the only genes in the genomes, then BAD
would just be the unsigned breakpoint distance.

2) The maximum adjacency disruption criterion
(MAD):

MAD = max
i=1,...,k−1

{max{|gi − gi+1|, |hi − hi+1|}},

the maximum, over all pairs of adjacent genes in the
cluster in either genome, of the difference in their po-
sitions in the gene order in the cluster in the other
genome. A low value of MAD means that no gene in the
cluster has drifted far from its position in the ancestral
genome.

3) The summed adjacency disruption criterion
(SAD):

SAD =
∑

i=1,...,k−1

{|gi − gi+1| + |hi − hi+1|},

the sum, over all pairs of adjacent genes in the cluster
in both genomes, of the difference in their positions in
the gene order in the cluster in the other genome. This
measures the overall movement of genes within the clus-
ter from their positions in the ancestral genome.

Values for MAD, for k � 13 are known and can be
used for statistical testing. For large k, modelling sug-
gests that

Pr(MAD) � a ≈ β(2 − β)2k, (10)

where β = a/k.

Fig.7. Determination of (1, 3) clusters (or (3,1) clusters).
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More recently we have introduced the notion of gen-
eralized gene adjacency [32,67-68]. We say two genes are
(i, j)-adjacent if they are separated by i − 1 genes on
a chromosome in either one of the genomes and j − 1
genes in the other. We define a (θ, ψ) cluster in terms
of a graph where the genes are vertices and edges are
drawn between those (i, j)-adjacent gene pairs where
min(i, j) < min(θ, ψ) and max(i, j) < max(θ, ψ). Then
the connected components of the graph are the (θ, ψ)
clusters, as illustrated in Fig.7. Generalized adjacency
clusters embody gene order considerations within the
cluster in that they cannot have two genes close to-
gether in one genome but far apart in the other, al-
though the cluster could be very large.

What value should we assign θ (and ψ)? To an-
swer this, we first broaden the problem by defining a
wide class of similarities (or equivalently, distances) be-
tween two genomes in terms of weights on the (i, j)-
adjacencies, namely any system of fixed-sum, symme-
tric, non-negative weights ω non-increasing in i and j.
This is the most general way of representing decreasing
weight with increasing separation of the genes on the
chromosome. Thus, given two genomes S and T with
the same genes, let ωij be the weight on two genes that
are (i, j)-adjacent, such that

1) 0 � ωij = ωji, i, j ∈ {1, 2, . . . , n− 1},

2)
n−1∑
i=1

n−1∑
j=1

ωij = 1,

3) ωi,j � ωk,l if

(a) max(i, j) < max(k, l), or

(b) max(i, j) = max(k, l) and min(i, j) <

min(k, l).

We define the distance between two genomes S and T
as

d(S, T ) = 2n− 2 −
n−1∑
i=1

(
niiωii +

n−1∑
j=1

nijωij

)
, (11)

where nij is the total number of gene pairs (x, y) that
are i-adjacent in S and j-adjacent in T . In any pair
of genomes, we then wish to maximize the sum of the
weights, which essentially maximizes the sensitivity of
the criterion. Our main result is a theorem showing
that the solution reduces to a uniform weight on gene
separations up to a certain value of both θ and ψ, and
zero weight on larger separations.

Theorem 6.1. Let αk = �
√

1+8(k−1)+1

2 	. The

weight ω that minimizes d(S, T ) has

ωij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎧⎪⎨
⎪⎩

1
k∗
, if i < αk∗ , j � i, or

i = αk∗ , j � k∗ − i(i− 1)
2

,

0, otherwise,
(12)

where k∗ is a natural number and maximizes the func-
tion

f(k) =
1
k

[ αk−1∑
i=1

i∑
j=1

(nij + nji)

+
k− 1

2αk(αk−1)∑
j=1

(nαkj + njαk
)
]
, (13)

where nij is the number of gene pairs i-adjacent on S
and j-adjacent on T . (See Fig.8 for the 2-dimensional
area measured by k∗.)

Fig.8. k is augmented from left to right, starting at the top row,

in the lower triangle including the diagonal. Values of ωij in the

upper triangle determined by symmetry.

We can set θ = ψ = �
√

1+8(k∗−1)+1

2 	 ≈ √
2k∗ and

use E[k∗], as function of n, to find the natural value
for the cut-off parameters θ = ψ in the uniform weight-
based distance.

We can use the fact that the nij are Poisson with
parameter E(nij) = 2(n−i)(n−j)

n(n−1) to show:
Theorem 6.2. Let nij be the number of gene pairs

i-adjacent on S and j-adjacent on T , then the f(k) in
Theorem 6.1 satisfies

E[f(k)] →
(
2 − α

n

)2

Var[f(k)] → 8
α2

(
1 +

2
α
− 2
α2

)
(14)

as n→ ∞, where α = �
√

1+8(k−1)+1

2 	.
Though we cannot find k∗ analytically, we can cha-

racterize it quite well using simulations[68].
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A second set of “natural” parameter values to serve
as an upper bound on the meaningful choices of θ and
ψ are the percolation thresholds of the (θ, ψ) clusters.
Beyond these values, tests of significance are not mean-
ingful because all clusters rapidly coalesce together. It
is no longer significant to find very large gene clusters.

Percolation has been studied for max-gap clu-
sters[69], but the main analytical results on percolation
pertain to completely random (Erdös-Rényi) graphs.
The graphs associated with (θ, ψ) clusters manifest
delayed percolation, so the use of Erdös-Rényi percola-
tion values would be a “safe” but conservative way of
avoiding dangerously high values of the parameters.

It was established by Erdös and Rényi[70-72] that for
random graphs where edges are independently present
between pairs of the n vertices with probability p, the
percolation threshold is p = 1/n.

We note that the percolation of the generalized
adjacency graph is delayed considerably compared to

Fig.9. (a) Simulation with genome length n = 1000, with 2θ2

edges in each graph, showing delayed percolation of gener-

alized adjacency graphs with respect to Erdös-Rényi graphs.

Bandwidth-limited graphs are also delayed but much less so. (b)

Percolation point as a function of
√

n, again with 2θ2 edges per

graph. Delay measured by coefficient of
√

n in equation for trend

line.

unconstrained Erdös-Rényi graphs with the same num-
ber of edges, as may be seen in Fig.9. To under-
stand what aspect of the generalized adjacency graphs
is responsible for this delay, we also simulated random
graphs of bandwidth � θ, since this constraint is an
important property of generalized adjacency. It can be
seen in Fig.9, that the limited bandwidth graphs also
show delayed percolation, but less than half that of gen-
eralized adjacency graphs.

As a control on our simulations, it is known (cf. [73])
that Erdös-Rényi graphs with rn edges, with r some-
what larger than 1/2 have a cluster of size (4r − 2)n.
Our percolation criterion is that one cluster must have
at least n/2 vertices. Solving this, we get r = 0.625.
This means that the 2θ2 edges we use in each of our
simulated graphs must be the same as 0.625n, suggest-
ing that θ = 0.56

√
n, compared to the 0.61

√
n we found

in our limited simulations.
The two major mathematical and computational

problems arising from this work are the analytical pre-
diction of the random variable k∗, and the accounting
for the delay in percolation behaviour of generalized
adjacency graphs beyond the bandwidth effect.

7 Conclusions

The reconstruction of ancestral genomes involves a
diverse set of algorithmic, graph theoretical, simula-
tion modelling, statistical and probability approaches,
many of which have been extensively investigated, oth-
ers less so, but all of which are suggestive of further
investigation and application. Although we have not
dwelt on this in this chapter, the developments in this
field have been continually provoked by and refined by
applications to gene order data, from organelles like
mitochondria and chloroplasts, through prokaryotic or-
ganisms like bacteria, to protists, yeasts, algae and
higher plants, insects and higher animals, including ver-
tebrates at all levels and especially mammals.
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de Montréal. She has worked on the
comparison of partially ordered and
noisy genomes and the incorporation

of whole genome duplication descendants into gene order
phylogeny.
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