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Abstract—A Maximum Agreement SubTree (MAST) is a largest subtree common to a set of trees and serves as a summary of

common substructure in the trees. A single MAST can be misleading, however, since there can be an exponential number of MASTs,

and two MASTs for the same tree set do not even necessarily share any leaves. In this paper, we introduce the notion of the Kernel

Agreement SubTree (KAST), which is the summary of the common substructure in all MASTs, and show that it can be calculated in

polynomial time (for trees with bounded degree). Suppose the input trees represent competing hypotheses for a particular phylogeny.

We explore the utility of the KAST as a method to discern the common structure of confidence, and as a measure of how confident we

are in a given tree set. We also show the trend of the KAST, as compared to other consensus methods, on the set of all trees visited

during a Bayesian analysis of flatworm genomes.

Index Terms—Phylogenetics, consensus tree, agreement subtree, MAST.
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1 INTRODUCTION

PHYLOGENY inference done on genetic data using max-
imum parsimony, maximum likelihood, and Bayesian

analysis usually yields a set of most likely trees (phylo-
genies). A typical approach used by biologists to discern the
commonality of the trees is to apply a consensus method
which yields a single summary tree containing edges that
are well represented in the set. For example, the majority
rules consensus tree contains only the edges (bipartitions of
the leaf set) that exist in a majority of input trees, and is in
some sense the optimal balance between including edges
that are false, and including edges that are true [2].
Consensus methods are also commonly used for their
original purpose [3]; they summarize the information
provided from different data sets, as in the case when gene
trees from different genes provide conflicting phylogenies.
There are other uses [4] but these are the two that we
consider in this paper.

If one desires a more conservative summary, they may
use the strict consensus tree, which has an edge if and only
if the edge exists in all of the input trees. Yet even for this
extremely conservative consensus method, there has been
debate as to its validity and the conditions under which it
should be used [5], [6], [7]. In particular, Barrett et al. [5]
showed an example where a parsimony analysis of two

data sets yields a consensus tree that is at odds with the tree
obtained by combining the data. Nelson [6] replied with an
argument that the error was not the act of taking the
consensus, but the act of pooling the data.

The issue at the heart of this debate is, essentially, that of
wandering or rogue leaves (taxa). Indeed, one or many leaves
appearing in different locations of otherwise identical trees
have created the problems noticed by Barrett et al., and can
also reduce the consensus tree to very few, if any, internal
edges. On the other hand, at the time of this debate, Finden
and Gordon [8] had already characterized Maximum
Agreement SubTrees (MASTs): maximum cardinality sub-
sets of the leaves for which all input trees agree. By
calculating a MAST, one avoids Barrett’s issue because all
MASTs agree with the parsimonious tree they computed on
the combined data. As we will see, a single MAST can be
misleading however, as there can exist two MASTs (on a
single set of trees) which share almost no leaves. Further,
there are potentially an exponential (in the number of
leaves) number of MASTs for a single set of trees [9]. For
Barrett’s example we will see that our new method
appropriately excludes the contentious part of the tree,
and so may be more fit than traditional consensus methods
for comparing trees obtained from different analyses.

Wilkinson was the first to directly describe the issues
surrounding rogue leaves and develop an approach to try to
combat them [4]. Since then, a large body of work by
Wilkinson and others has grown on the subjects of finding a
single representative tree [4], [10], [11], [12], [13], [14] or
something other than a tree (forest, network, etc.) [15], [16],
[17], [18], [19]. A full review of this work is out of the scope
of this paper so we refer the reader to the chapters of Bryant
[20] or Bonizzoni et al. [21], the earlier work of Wilkinson
[4], [10], and Pattengale et al. [14]. Despite the myriad of
options we notice a distinct lack of an efficiently compu-
table base-line method for reporting subtrees of high
confidence; a method analogous to the strict consensus,
but less susceptible to rogue leaves.

Thus, we introduce the Kernel Agreement SubTree
(KAST) to summarize the information shared by all (poten-
tially exponential) MASTs: the KAST is the intersection of all
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MASTs. Like the strict consensus, the KAST gives a summary
of the common structure of highest confidence, except that it
excludes the rogue leaves that confound traditional con-
sensus methods. In other words, the strict consensus gives
only the edges with 100 percent support of the input trees,
while a MAST criterion gives a single subset of the leaves M,
where all edges have 100 percent support, considering only
those leaves. Where there may be many MASTs, the KAST is
the unique subtree that has 100 percent support irrespective
of the subset of leaves we consider, and may thus be
considered a subtree of confidence.

The KAST has the benefits of having a simple definition,
of summarizing the subtree of confidence by reporting a
single tree, and unlike the other known subtree methods
can be computed in polynomial time (when at least one
input tree has bounded degree). Note that we do not use the
term kernel in the machine learning sense (as in [22]).

When speaking of a reconstruction method that pro-
duces many most probable trees, Barrett et al. [5] called for
“conservatism” and suggests the use of the strict consensus.
In Section 5, we show the utility of the KAST as a means to
get a conservative summary of many most probable trees.
We then show the utility of the KAST in the original setting
of consensus methods: on trees obtained through different
analyses. In each setting, we use the KAST not only to find
subtrees of confidence, but as an indicator of randomness in
the input trees. We then explore the trend of the KAST, as
well as other commonly used consensus methods, on the set
of phylogenies visited during a Bayesian analysis of
flatworm phylogenies.

The paper is organized as follows: we continue by
formally defining the problem in Section 1.1 and showing
properties of the MAST and KAST in Section 1.2. We then
present Bryant’s algorithm for computing the MAST in
Section 2, on which our algorithm to compute the KAST
(Section 3) is based. Section 4 reports experimental values
for the expected size of the KAST on various sets of trees
generated at random while Section 5 shows how the KAST
can be used to find subtrees of confidence, and report
subsets of trees for which we are confident.

1.1 Definitions

Consider a set of trees T ¼ fT1; T2; . . . ; Tkg and a set of
labels L such that each x 2 L labels exactly one leaf of each
Ti. We will restrict a tree to a subset L0 of its leaf set L; TijL0
is the minimum homeomorphic subtree of Ti which has
leaves L0 (i.e., remove all leaves in L n L0 and contract all
degree 2 nodes). An agreement subtree for T is a subset L0 �
L such that T1jL0 ¼ T2jL0 ¼ � � � ¼ TkjL0 . A maximum agreement
subtree (MAST) is an agreement subtree of maximum size.
The set of all maximum agreement subtrees is denoted M.

Definition 1.1. The Kernel Agreement SubTree is the
intersection of all MASTs (i.e., \T2MT ).

See Fig. 1 for an example.
As usual, node a is an ancestor of b if the path from b to

the root passes through a. b is a descendant of a. For nodes a
and b, the least common ancestor lcaða; bÞ is the ancestor of a
and b that is a descendant of all ancestors of a and b.

1.2 Properties of a MAST and the KAST

In Section 3, we show that the KAST can be computed
in the same time as the fastest known algorithm to
compute the MAST, by a convenient use of dynamic
programming. We devote this section to showing desirable
properties of the KAST by contrasting it with the MAST.
First, we look at the role the KAST can play in Barrett’s
example [5]. The rooted trees obtained by his parsimony
analyses are T1 ¼ ðA; ðB; ðC;DÞÞÞ and T2 ¼ ðA; ððB;CÞ; DÞÞ
(written in Newick format). The set of maximum agree-
ment subtrees for T1 and T2 is

fðA; ðB;DÞÞ; ðA; ðD;CÞÞ; ðA; ðB;CÞÞg:

While the consensus methods are forced to give trees on the
full leaf set, the KAST has only a single leaf A, which
indicates that there is not enough information to imply a
subtree of confidence. This is the result we would prefer to
see, given the circumstances. We see more examples in
Section 5 that show a KAST, which finds substantial
common substructure, yet does not falter by including
subtrees that are at odds with biological observation.

Take a tree set T with a MAST of size m. Adding a tree T
to T cannot result in a MAST larger than m. This is due to
the fact that an agreement subtree of T [ fTg must also be
an agreement subtree of T . On the other hand, the signal for
a particular kernel can become apparent when more trees
that agree are added to the set.

Property 1.2. The KAST on tree set T can be smaller than that of
T [ T , for some tree T .

Fig. 1 shows an example exhibiting this property. The
KAST on input tree set {T1, T2} has two leaves (is essentially
empty) whereas the subtree on leaves f1; 2; 3; 4; 5g is
amplified by the addition of the tree T3 to the set. We also
see in Section 4 that the KAST size can often increase when
adding somewhat similar trees to a set.

We finish with a few negative results about the MAST.
The first shows that for some sets of trees there may exist
two MASTs that have nearly nothing in common. In other
words, the MAST is not necessarily a good indicator of the
common subtrees of confidence between two trees.
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Fig. 1. The effect of adding a tree to the input set. The MASTs for {T1, T2} are {1,2,3,4,5}, fa; b; 1; 3; 4g, fa; b; 2; 3; 4g, and fa; b; 3; 4; 5g, yielding the KAST
f3; 4g. The MAST for {T1, T2, T3} is f1; 2; 3; 4; 5g, yielding the KAST f1; 2; 3; 4; 5g. The strict consensus of {T1, T2, T3} has only one internal edge.



Property 1.3. There exists a family of tree sets that yields at least

two MASTs, the intersection of which is size 2.

Take the caterpillar trees

ð1; ð2; ð3; . . . ; ðn� 1; nÞ . . .ÞÞÞ;

and

ðn=2; ðn=2þ 1; . . . ; ðn; ðn=2� 1; . . . ; ð2; 1Þ . . .ÞÞ . . .ÞÞ;

for even n. Two of the MASTs for these trees are
f1; 2; . . . ; n=2; n=2þ 1g and fn=2; n=2þ 1; . . . ; n� 1; ng.

The next property shows that the number of MASTs and
the size of them are not correlated with how similar they
are. In other words, those values are not good indicators of
their quality. We will see experimental evidence corrobor-
ating this fact in Section 4.

Property 1.4. There exists a family of tree sets that yields exactly

two MASTs of size �ðnÞ, but the KAST is of size 4.

For this example, we use trees that are nearly cater-
pillars. We write them as caterpillars, except S1 denotes a
subtree ð1a; 1bÞ while Sm

2þ1 denotes a subtree ððm=2þ 1Þa;
ðm=2þ 1ÞbÞ. As depicted in Fig. 2, the first tree is

ðS1; ð2; ð3; . . . ; ðSm
2þ1; . . . ; ðm� 1;mÞ . . .Þ . . .ÞÞÞ;

and the second is

m; m� 1; . . . ;
m

2
þ 2; S1; 2; . . . ;

m

2
; Sm

2þ1

� �
. . .

� �� �� �
. . .

� �� �
;

where m ¼ n� 2. The only two MASTs are now

f1a; 1b; 2; . . . ;m=2; ðm=2þ 1Þa; ðm=2þ 1Þbg;

and

f1a; 1b; ðm=2þ 1Þa; ðm=2þ 1Þb;m=2þ 2; . . . ;m� 1;mg:

2 FINDING THE MAST

The current fastest known algorithms for the MAST
problem are due to Farach et al. [23] and Bryant [24].
Let di be the maximum degree (number of children) of

tree Ti 2 T . These algorithms run in Oðkn3 þ ndÞ time

where n ¼ jLj, k is the number of trees in the input, and d

is the minimum over all di, 1 � i � k. While either of

these algorithms can be adapted to compute the KAST,

we find it instructive to describe the algorithm of Bryant.

We are comprehensive in our description. However, we

refer the reader to Bryant’s dissertation [24] for a more

precise description of the algorithm.
Take a; b 2 L and call T ða; bÞ the set of all agreement

subtrees where the lcaða; bÞ is the root of the tree. Let

Mða; bÞ � T ða; bÞ be the set of maximum agreement sub-

trees where lcaða; bÞ is the root, and MAST ða; bÞ be the

number of leaves in any member ofMða; bÞ. We devote the

rest of this section to computingMAST ða; bÞ since the size of

the MAST is simply the maximum MAST ða; bÞ over all

possible a and b.
Take three leaves a; b; c 2 L. acjb denotes a rooted triple

where lcaða; cÞ is a descendant of lcaða; bÞ. When lcaða; bÞ is

the root we say that c is on a’s side of the root with respect to

b. Leaves a, b, and c form a fan triple, written ðabcÞ, if

lcaða; bÞ ¼ lcaða; cÞ ¼ lcaðb; cÞ. Define R to be the set of

rooted triples common to all trees in T and F to be the set of

fan triples common to all trees in T . Bryant showed that an

agreement subtree in T is equivalent to a subset of the set of

rooted and fan triples R and F .
The algorithm to compute MAST ða; bÞ hinges upon the

fact that the triples on a’s side of the root, and the triples

on b’s side of the root can be addressed independently.

Consider the set X ¼ fx : xajb 2 Rg [ fag such that lcaða; bÞ
is the root. In this case, X corresponds to the leaves in a

subtree on a’s side of the root. Define MASTa ¼
maxfMAST ða; xÞ : x 2 Xg to be the MAST of the leaves

in a subtree on a’s side of the root. MASTb is defined

similarly, where X ¼ fx : ajbx 2 Rg [ fbg.
If F is empty (i.e., the root of every tree in T is binary),

then we have simply,

MAST ða; bÞ ¼MASTa þMASTb:

Otherwise, consider the maximum size subset C � L such

that for all c 2 C we have ðabcÞ 2 F . Again, MASTc is the

MAST that considers only the vertices x such that xcjb (or

equivalently, xcja). The triples corresponding to a MASTc
are not the same as those for MASTa and MASTb. However,

MASTc and MASTc0 for c; c0 2 C could correspond to the

same triples. To avoid conflict, construct a graph GðCÞ as

follows: for each c 2 C create a vertex with weight MASTc.

Make an edge between v and w if and only if ðbvwÞ 2 F
(equivalently ðavwÞ 2 F ). In other words, v and w have the

potential to appear in a subtree of the root that does not

include a or b. A maximum weight clique S in this graph is

the MAST of all potential subtrees that do not include a or b.

So MAST ða; bÞ can be written

MAST ða; bÞ ¼MASTa þMASTb þ
X
s2S

MASTs;

where S is a maximum weight clique in GðCÞ and MASTs is

defined similarly to MASTa but with X ¼ fx : ajsx 2
Rg [ fsg.
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Fig. 2. (a) A tree set displaying Property 1.4. (b) The two MASTs for the
tree set (a).



3 FINDING THE KAST

KAST ða; bÞ is the intersection of all MASTs in Mða; bÞ (the
MASTs where lcaða; bÞ is the root). In this section, we show
how to compute KAST ða; bÞ through a modification of the
algorithm of Section 2, without changing the asymptotic
running time.

The following theorem hints that the independence of
subsolutions that gives rise to the MAST dynamic
programming algorithms, will similarly give rise to a
KAST algorithm.

Theorem 3.1. Take leaves x and y such that lcaðx; yÞ is not the
root for some MAST. Then lcaðx; yÞ is not the root for every
MAST containing both x and y.

Proof. Assume that the theorem does not hold, namely
that there is another MAST containing both x and y
where x occurs on the other side of the root from y.
Since the second MAST has root lcaðx; yÞ (because x and
y are on either side of the root), this implies that the
second MAST could be a valid subtree in the first
MAST, a contradiction. tu

Let Ma be the set of all MASTs on the leaf set
fx : xajb 2 Rg. In other words, Ma is the collection of sets
of leaves that correspond to all MASTa. Call LðMaÞ the set
of leaves in any MAST in Ma (i.e., LðMaÞ ¼ fz 2
M : M 2 Mag). Symmetrically, Mb corresponds to the leaf
set on the leaves fx : ajbx 2 Rg and LðMbÞ ¼ fz 2M:
M 2 Mbg. We begin by showing how to find KAST ða; bÞ
for binary trees.

Theorem 3.2. If the trees T1; T2; . . . ; Tk are binary, then

KAST ða; bÞ ¼ ð\T2Ma
T Þ [ ð\T2Mb

T Þ:

Proof. If a ¼ b then this is trivially true. Assume by
induction that KAST ðc; dÞ can be calculated where
lcaðc; dÞ is a descendant of lcaða; bÞ.

Recall that MAST ða; bÞ ¼MASTa þMASTb when the
trees in T are binary and that Ma is the set of MASTs
that include only the leaves a and x such that lcaða; bÞ is
an ancestor of lcaða; xÞ. It follows that Ma and Mb have
the following property:

LðMaÞ \ LðMbÞ ¼ ;:

So KAST ða; bÞ depends on Ma and Mb independently.
Bryant showed that any leaf included in Ma or Mb

will necessarily exist in some MAST for T (a corollary of
Theorem 6.8 in [24]). Since the KAST contains only the
leaves that exist in every MAST, then KAST ða; bÞ must
be equal to the intersection of all MASTs in Ma, along
with the intersection of all MASTs in Mb. tu

So the algorithm to compute KAST ða; bÞ takes the
intersection over all sets KAST ða; xÞ such that axjb 2 R
and MAST ða; xÞ is maximum. It does the same for b’s side
of the root, and then takes the union of the result.

We now present the main result of this section. Recall
from Section 2 the graph GðCÞ where C is the set of triples
satisfying ðabcÞ 2 F , and that MAST ða; bÞ ¼MASTa þ
MASTb þ

P
s2S MASTs.

Theorem 3.3. KAST ða; bÞ ¼ ð\T2Ma
T Þ [ ð\T2Mb

T Þ [
ð\S2Kð[s2Sð\T2Ms

T ÞÞÞ where K is the set of all maximum
weight cliques on graph GðCÞ.

Proof. If a ¼ b then this is trivially true. Assume by
induction that KAST ðc; dÞ can be calculated where
lcaðc; dÞ is a descendant of lcaða; bÞ.

Take any maximum weight clique S 2 K. Bryant
showed that for S ¼ fs1; . . . ; smg, [mi¼1Ti where Ti 2 Msi ,
is a MAST on the set of leaves fc : ðabcÞ 2 Cg. By the
definition of GðCÞ we know that LðMs1

Þ; LðMs2
Þ; . . . ;

LðMsmÞ; LðMaÞ, and LðMbÞ are pairwise disjoint.
Further, any leaf in the sets LðMsiÞ, LðMaÞ, or LðMbÞ
are necessarily included in some MAST for T (a corollary
of Theorem 6.8 in [24]). So the leaves in a KAST ða; bÞ
could have only the leaves that are in every MAST inMsi

(i.e., ð[s2Sð\T2Ms
T ÞÞ), for all 1 � i � m. But each clique in

K represents a different MAST, so only the leaves that are
in every clique will be in the KAST. Finally, this set is
disjoint from LðMaÞ and LðMbÞ for the same reason that
LðMaÞ and LðMbÞ are disjoint from each other. tu

4 EXPERIMENTS

We implemented the KAST from code that computes the
MAST in the phylogenetic package RAxML [25]. In this
section, we report empirical evidence about the expected size
of the KAST and MAST under three different models. The
first model builds a tree set T of random trees constructed
through a birth/death process, while the second starts with a
random birth/death tree and then incrementally adds new
trees to the set, each a single Nearest Neighbor Interchange
(NNI) move ([26], [27]) from the last. This way we see how
the expected sizes react to adding drastically dissimilar, or
fairly similar trees to the set T . The birth/death process has
parameters 1 for birth and 1/2 for death but is terminated
when the desired number of leaves is reached (if it
terminates before this, then the process is repeated).

Fig. 3 shows that as the size of T (the tree set) increases,
the size of the KAST decreases precipitously in the case of
the birth/death model, whereas it decreases more grace-
fully in the case of the NNI model. Each plot is generated
from an initial birth/death tree on 50 leaves, where new
trees are added to the tree set according to the prescribed
model. This process was repeated 10 times and the average
is reported. Plots with various numbers of leaves are similar
except that the curve is scaled on the “number of leaves”
axis proportionately.

The third model starts with a tree set comprised of three
trees, each with the same topology on 40 leaves. Rogue
leaves are then introduced by placing a new leaf in a
random location, independently in each of the three trees.
Fig. 4 shows the average of 10 runs. The figure clearly
shows that the size of the majority and strict consensus trees
are very small in the presence of only a few rogue leaves.
When only six rogue leaves are present, nearly a quarter of
the edges of the original tree are lost on the majority
consensus, whereas almost all are present in the KAST. On
the other hand, the KAST maintains three quarters of all
possible edges even when the number rogue leaves is equal
to the number of leaves in the original topology.

With regards to the number of MASTs, the plots in
Figs. 3 and 4 show an erratic curve while the curve for the
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KAST is stable, confirming that the phenomenon de-

scribed in Property 1.4 is not a rarity.

5 APPLICATIONS

We now demonstrate the application of the KAST to

biological data, for finding subtrees of confidence, as well

as finding subsets of the input tree set of confidence. To do

this, we gleaned phylogenies from the literature that are

known to have an agreed upon structure, except for a few

contentious leaves. Our intention is not to provide biological

insight, but to confirm the utility of the KAST by comparing

our results to familiar phylogenies. The real utility of the

KAST will be on phylogenies that are much larger, so large

as to make it difficult for a humans to process.

5.1 Analyses on Flatworm Phylogenies

In a recent publication by Philippe et al. [28], the proposed
phylogeny describes the Acoel and the Nemertodermatids
and Xenoturbellid as a sister clade to Ambulacraria, which

is vastly different from the previous publications. The
competing hypotheses are depicted in Fig. 5. In earlier
publications both Nemertodermatids and Acoels are the
outgroups with Xenoturbellid leaf grouping either with
the Ambulacraria or with the Nemertodermatids and
Acoels. Setting aside the interpretation and biological
ramifications of the new proposed tree topology, it is a
good real-world example for observing the effects of
KAST on contentious trees.

There are two main objectives that we wish to explore
through the use of this example. The first objective is to
determine if the KAST of a set of phylogenetic trees can
identify a subset that we are confident in. The second
objective is to show the KAST as a measurement of how
confident we are in the hypothesis of these trees.

5.1.1 Confidence in the Phylogenetic Tree

From their publication, Philippe et al. [28] presents three
trees, two from prior publications and one from their own
experimental result. With only 10 common leaves among
the three trees it is very easy to identify the similarity
between them by eye (Fig. 5).
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Fig. 4. The number of internal edges of the MAST, KAST, strict
consensus, and majority consensus trees as a function of the number of
“rogue” leaves in the tree set.

Fig. 5. Phylogenies from Fig. 1 of Philippe et al. [28] Xenoturbellid,
Nemertodermatids, and Acoels wander.

Fig. 3. The expected sizes and standard deviations of the MAST and
KAST for sets of dissimilar (a) and similar (b) trees.



A quick observation can find that Ecdysozoans and
Lophotrochozoans of Protostomia forms a clade, Verte-
brates and Urochordates and Cephalochordates of Chorda-
ta forms a clade, and Hemichordates and Echinoderms of
Ambulacraia forms a sister clade to Chordata; and that
Xenoturbellid, Nemertodermatids, and Acoels are the rogue
leaves. The KAST of these three trees agrees with this
observation (Fig. 6). This suggests that the KAST is able to
find a subtree that is biologically obvious.

With bigger trees it will be harder to identify the similarity
by eye. We would argue that the KAST can be an important
tool in identifying or verifying these similarities.

5.1.2 Phylogeny Reconstruction

To see if the KAST could identify a subset of trees that we
are confident of, in the context of phylogeny reconstruction,
we tried to replicate the analysis of Philippe et al. [28]. The
aligned mitochondrial gene set was taken from the
supplementary material section and used as input for the
Bayesian analysis tool that they used: PhyloBayes 3.2 [29],
[30], with the CAT model [28], [29] as the amino acid
replacement model and default settings for everything else.
We ran 10,000 cycles and discarded the first 1,000 as burn-
ins, as they did. The consensus tree by majority rule was
then obtained by CONSENSE [31] using all remaining
9,000 trees. The majority consensus tree (Fig. 7) we found is
in agreement with the CATþ � model tree from their
supplementary Fig. 1, which is available in the online
supplemental material, we obtain a node with degree three
that they do not.

To test the validity of the conservative tree produced by
the KAST, the kernel of the 9,000 tree set is calculated. Of
the 10 species in the KAST, three sponge species and two
jellyfish species group together as predicted, the two
annelida species group together as predicted, the three
echinoderms also group together as predicted, and the
topology of these phyla are also organized in the biologi-
cally obvious fashion (Fig. 8). This corroborates the notion
that the topology of KAST is the base-line topology.

Next, we test the variability of the KAST within the tree
set. Philippe et al. [28] sampled once every 10 cycles, to
simulate this, we sample 900 random trees in the 9,000 tree
set and calculate the KAST. We replicate this 1,000 times and
calculate the symmetric Robinson-Foulds distances (because
the KAST is binary, we divide it by two) between every pair
of KASTs generated. The average distance between these
KASTs is 0.73 with an average KAST size of 10.73.

We also calculate the KAST on varying sizes of tree sets
to test how sample size effects the KAST size. Samples of
5,000, 2,500, 1,200, and 500 trees all have KAST size of 11.
Starting with the samples of 250 trees the size of KAST start
to increase, with samples of 30 trees having size 16. While

the KAST from the whole 9,000 tree set is obviously more
conservative, the KAST from the smaller samples agree
with all known competing hypotheses while including up
to half the leaves.

The situation improves if only the k most frequently
visited trees are considered [13]. Fig. 9 shows the number of
edges obtained by the various methods for values of k from 1
to 20. When the six most frequent topologies are considered,
the KAST has the same number of edges as the majority
consensus; they each have 28 of the possible 30 edges. The
majority consensus tree does not change after the considera-
tion of the nine most frequent topologies, indicating that the
addition of other topologies does not strengthen or weaken
edges’ relative presence in the tree set. The frequency for
k ¼ 1; 2; . . . ; 15 is as follows: 182, 180, 145, 127, 112, 109, 105,
104, 88, 76, 71, 69, 63, 63, 62. The significant drop in the
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Fig. 6. The KAST (and MAST) of the phylogenies of Fig. 5.

Fig. 7. The majority rule consensus tree using the last 9,000 trees visited
by PhyloBayes. The topology is essentially the same as Supplementary
Fig. 1, which is available in the online supplemental material, from
Philippe et al. [28].

Fig. 8. The KAST of the 9,000 trees from the Bayesian analysis program
PhyloBayes.



number of occurrences of the ninth most frequent topology
corresponds to the stability of the majority consensus. The
KAST of the nine most frequent topologies has 24 edges. The
drastic fall in the size of the KAST after k ¼ 6 indicates that
the seventh most frequent topology is significantly different
than the first six. The size of the KAST continues to drop,
predictably (see Fig. 3), as more of the less frequently visited
(so less significant) topologies are considered.

A comparison of Figs. 9 and 10 shows that the removal of
1,000 burn-in cycles changes little in terms of the character-
istics of the KAST, strict, and majority consensus trees. In
this case, the majority consensus tree of the whole set is the
majority consensus tree of the set without the first 1,000.
The proportion of the 10 most frequent topologies visited to
all topologies visited is roughly the same in this case; it is
roughly 15 percent for both. However, if the Bayesian
analysis is recomputed on all taxa except for the two
excluded from the KAST of the six most frequent topologies
(Xenoturbella and Sepia Esculenta), we find that the 10 most
frequent topologies account for about half of all those
visited. Further, the majority consensus tree for this analysis
on 30 taxa has the same number of internal edges as the
analysis on the full set of 32. This is evidence that the KAST
has detected the genomic data with confounding informa-
tion, in this case the Xenoturbella and Sepia Esculenta
contain the phylogenetically confounding information.

5.2 Analyses on �-Proteobacteria Phylogenies

Finally, we test the KAST on the phylogeny of �-proteobac-
teria that has been the subject of pains-taking study. We refer
the reader to Herbeck et al. [32] for a discussion of previous
work. For our purposes, we concentrate on the studies
related to 12 particular species used in Lerat et al. [33], who
reconstructed a phylogeny based on hundreds of genes.
Since then there have been other attempts to reconstruct the
phylogeny based on the syntenic data of the whole genome
[34], [35], [36], [37].

We turn our attention to two studies that produced trees
in discordance with that of Lerat et al. Belda et al. [36]
produced two trees, one using Maximum Likelihood on

amino acid sequences and the other using reversal distance
on the syntenic information (they used the breakpoint
distance as well, which produced the same tree as the
inversion distance). The likelihood analysis gave a tree that
agreed with Lerat’s. The inversion distance gave a tree that
has significant differences to that of Lerat; the KAST between
the two has 9 of 12 leaves. However, we will see that when we
add certain trees from the study of Blin et al., the KAST size is
10. Further, the leaves excluded are Wigglesworthia brevi-
palpis and Pseudomonas aeruginosa; the former identified
by Herbeck et al. [32] as troublesome to place, and the latter
being the outgroup that they used to root their trees.

Blin et al. [35] used model free distances (breakpoints,
conserved intervals, and common intervals) on the syntenic
data to reconstruct their phylogenies. They produced many
trees with the various methods on two different data sets.
The syntenic data that yielded the interesting phylogeny for
our purposes was produced from coding genes along with
ribosomal and transfer RNAs. Blin et al. noticed that their
trees computed on this data, using conserved and common
intervals, were less similar to the Lerat tree than the others.
The KAST confirms this: the KAST on the set of all
published trees other than these two is 10 while the
inclusion of either one (they are the same) yields a KAST
of size 5. Our experimental data tell us that a sequence of six
trees, each produced by a random NNI operation from the
last, will yield a KAST of size 5 while six unrelated trees
would produce a KAST of size 2. This provides a hint that
we could have higher confidence in the set of trees that
don’t include those two trees.

6 CONCLUSION

We claim that the utility of the KAST is two-fold. The first is
that the KAST is a safe summary of the subtree of confidence
for a set of trees. The second is that the size of the KAST is
correlated with how related the set of trees is. The KAST is
not as susceptible to rogue leaves as the very conservative
strict consensus, and is not as misleading as the MAST can
be. Furthermore, unlike the other methods that attempt to
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Fig. 9. The number of edges in the KAST, majority, and strict consensus
trees on the k most frequent topologies visited in the last 9,000 iterations
by PhyloBayes.

Fig. 10. The number of edges in the KAST, majority, and strict
consensus trees on the k most frequent topologies visited in all
10,000 iterations by PhyloBayes.



characterize tree structure in the presence of rogue leaves,

our measure is computable in polynomial time.
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