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Abstract

The notion of partial geodesic (or geodesic patch) was introduced by
Jamshidpey et al. in “Sets of medians in the non-geodesic pseudometric
space of unsigned genomes with breakpoints” [7]. In this paper, we study
the density of points on non-trivial partial geodesics between two per-
mutations ξ

(n)
1 and ξ

(n)
2 chosen uniformly and independently at random

from the symmetric group Sn, where Sn is endowed with the breakpoint
distance.

For a permutation π := π1 ... πn, any unordered pair {πi, πi+1}, for
i = 1, ..., n − 1, is called an adjacency of π. The set of all adjacencies of
π is denoted by Aπ. Denote by id(n) the identity permutation, and let
In be an arbitrary subset of Aid(n) . We classify the set of all adjacencies
of a permutation π ∈ Sn into four types, with respect to In. Then for
a permutation ξ(n) chosen uniformly at random from Sn, we derive a
convergence theorem for the normalized number (after dividing by n) of
adjacencies of each type in ξ(n) with respect to In (for some random or
deterministic choices of In), as n→∞. We also see an application of this
convergence theorem to find the appropriate choices of In.

A geodesic point of u and v in a pseudometric space (S, ρ) is a point
w of the space that ρ(u,w) + ρ(w, v) = ρ(u, v). In other words, a point is
a geodesic point of u and v if and only if it is located on a partial geodesic
between u and v. We find an upper bound for the number of permuta-
tions x ∈ Sn for which there exists at least one non-trivial geodesic point
between id(n) and x, far from both. This partially verifies the conjecture
of Haghighi and Sankoff stated in “Medians seek the corners, and other
conjectures” [5], namely we prove that, with high probability, there is no

breakpoint median of two permutations ξ
(n)
1 and ξ

(n)
2 chosen uniformly

and independently at random from Sn, far from both of them.

∗Partially supported by CNPq, FAPERJ and NSERC. DS holds the Canada Research
Chair in Mathematical Genomics.
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1 Introduction

When there is no duplication, linear unichromosomal genomes are represented
by permutations, where each number represents a gene or a marker. To compare
two linear unichromosomal genomes with an identical set of genes, one can count
the number of their dissimilarities or breakpoints. More precisely, for two linear
unichromosomal genomes G and G′ with the same set of genes, a pair of adjacent
genes in G is called a breakpoint of G with respect to G′, if these genes are not
adjacent in G′. It is clear that the number of breakpoints of G with respect to
G′ is equal to the number of breakpoints of G′ with respect to G. Introduced
by Sankoff and Blanchette in [11], 1997, the breakpoint distance is the number
of breakpoints in the set of gene adjacencies of two unichromosomal genomes
with an identical set of genes.

On the other hand, we can use the definition of median to compare more than
two genomes, namely, having a set of genomes A = {G1, ..., Gk} (all genomes
are in the symmetric group Sn) and a genomic distance d, a median of A is

a genome that minimizes the total distance function dT (·, A) :=
∑k
i=1 d(·, Gi).

The minimum value of dT (·, A) is called the median value of the setA. Motivated
by the Steiner points, the median problem is the problem of finding a median
for a given set A of genomes. The median problem, has been used for the first
time by Sankoff et al. [12], for evolutionary models of gene orders. The goal was
to obtain more information about the ancestors of a given set of genomes and
also to apply it to small phylogeny problems. In the small phylogeny problem
the topology of the ancestral tree is given and the ancestral nodes (vertices of
degree greater than 1) should be estimated such that the total sum of distances
over all pairs of neighbours in the tree attains its minimum. The tree obtained
in this way is the closest tree to preserve the parsimony principle on its paths.

The median problem has been extensively studied for different genome dis-
tances, and for many of them including the breakpoint distance on linear unichro-
mosomal genomes, it is shown that the median problem is NP-hard [1, 2, 13, 4].
This paper concerns the breakpoint median problem for linear unichromosomal
genomes represented by unsigned permutations.

Despite of its importance in parsimony-based phylogenetics, the median suf-
fers from several disadvantages. The first one is that it is very hard to find
a median for most genomic distances. In fact, as we mentioned, the median
problem is NP-hard in many cases. Another problem is that although a median
genome may carry valuable information from all given genomes (inputs), it is
not necessarily close to the ancestral genome. In other words, it is not a good es-
timator for the true ancestor. Zheng and Sankoff [14] provided some simulation
studies, for a random model of evolution, showing that their heuristic median
does not approximate the ancestor for the long-time evolution of genomes, while
for genomes involved in evolution for a shorter period of time, medians may ap-
proximate the true ancestor. Later, Jamshidpey and Sankoff [8] proved that
when the evolution is modelled by some continuous time random walks on Sn
(group of permutations of length n), including reversal, DCJ, and transposition
random walks (here by transposition we mean the mathematical transposition),

2



until time cn of the evolution, for c < 1/4, the true ancestor can be approxi-
mated asymptotically almost surely by a median while for c > 0.61, the medians
are not close to the true ancestor. They conjectured that the median solutions
lose their credibility to approximate the ancestor right after n/4. It is worth
mentioning that, although the medians will not be useful to approximate the
true ancestor for some random evolutionary models, they may still carry some
important information about ancestors. More recently, Jamshidpey and Sankoff
found all possible positions of asymptotic medians of k random permutations
sampled from high speed random walks [6, 9]. Determining all possible locations
of medians with respect to a random sample of genomes, their results signifi-
cantly reduce the median search space for a number of edit distances on groups
of permutations or signed permutations. Another obstacle about the median is
that they are not unique and different medians may be of considerable distance
from each other [5]. Then, for a set of genomes having many medians it is
not clear which of them is the closest to the ancestor. Still, another concern is
that not all the medians carry useful information about the ancestor or input
genomes. Following some simulation studies, Haghighi and Sankoff [5] conjec-
tured that a major proportion of breakpoint medians of k random permutations
lie around these k random permutations (corners), and so most of breakpoint
medians for random genomes just have information about one of them. How-
ever, in their simulations they observed that even it is a minority, there still
exist medians that are far from any of these k random permutations, and from
the biological point of view, studying these medians is more interesting since
they have information from all of the given permutations. They observed that
as the size of permutations increases, the proportion of these medians far from
the corners decreases. Jamshidpey et al. [7] investigated this conjecture further
and found a family of breakpoint median points using the new concept of acces-
sible points. This concept may also help us to find a median far from corners.
They partially proved the conjecture stated in [5], that the median value of
k permutations chosen uniformly at random from Sn is almost (k − 1)(n − 1)
(2n for three random permutations), with high probability, after a convenient
rescaling of the breakpoint distance. They showed that any accessible point
from a set of k random permutations is an asymptotic median of those k ran-
dom permutations, with high probability. They proved that any median of k
random permutations must take almost all of its adjacencies from at least one
of the k random permutations. Making use of this mathematical property in [7],
Larlee et al. [10] proposed a construction for a genome which includes gene order
information from all three given genomes such that the total distance is approx-
imately 2.25n, where n is the size of the permutations, that is 0.25n bigger than
the median value.

Motivated by the conjecture of Haghighi and Sankoff in [5], one of the objec-
tives of this paper is to study this conjecture starting with two random permu-
tations, as a first step, and in doing so, construct tools and results that can be
used later to help in the general problem (for more than two permutations). In
particular, in this paper, we study the accessible points of two random permu-
tations. We introduce different notions to study the breakpoint median of two
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or more number of permutations. We provide an equivalence definition for the
concept of accessibility of two permutations. Given a subset I of adjacencies of
the identity permutation id = id(n) (later we call this kind of subsets, segment
sets), we classify the set of all adjacencies of the symmetric group Sn, with
respect to I, into four types. Then for a permutation ξ(n) chosen uniformly
at random from Sn we compute the expectation and variance of the number
of adjacencies of each type in ξ(n). We derive a convergence theorem for the
normalized number (after dividing by n) of different types of adjacencies of ξ(n)

with respect to I (for both random or deterministic choice of I). This leads
us to discuss further about the possible segment sets I chosen from identity for
which one can construct a permutation π in the set of all permutations lying on

partial geodesics connecting id and ξ(n), denoted by [id, ξ(n)], such that the set
of adjacencies of π contains I and the remaining adjacencies of π are contained
in the set of adjacencies of ξ(n). Taking convenient segment sets I (whose size is
neither very small nor very big) we can say that π is located far from id and ξ(n).
In this way, we can estimate an upper bound for the probability of existence

of a permutation π in [id, ξ(n)], far from corners. We see that this probability
converges to 0, as n tends to ∞.

2 Preliminaries

A permutation of length n is a bijection on [n] := {1, ..., n}. A permutation π
is denoted by (

1 2 ... n

π1 π2 ... πn

)
,

or simply by π1 π2 ... πn. We represent a linear unichromosomal genome with
n genes or markers by a permutation of length n. Each number represents a
gene or a marker in the genome. The set of all permutations of length n with the
function composition operator is a group called the symmetric group of order n
denoted by Sn. We denote by id := id(n) the identity permutation 1 2 3 ... n.
For a permutation π := π1 ... πn, any unordered pair {πi, πi+1} = {πi+1, πi},
for i = 1, ..., n − 1, is called an adjacency of π. We denote by Aπ the set
of all adjacencies of π and by Ax1,...,xk

the set of all common adjacencies of
x1, ..., xk ∈ Sn. For any x, y ∈ Sn, the breakpoint distance (bp distance) between
x and y is defined by d(n)(x, y) := n − 1 − |Ax,y| which is a pseudometric. We
say a pseudometric (or a metric) ρ is left-invariant on a group G if for any
x, y, z ∈ G, ρ(x, y) = ρ(zx, zy). The bp distance is a left-invariant pseudometric
on Sn. We say two permutations π and π′ in Sn are equivalent, denoted by
π ∼ π′, if d(n)(π, π′) = 0. In other words they are equivalent if πi = π′n+1−i,
for i = 1, ..., n. The equivalence class containing permutation π is denoted by
[π]. The set of all equivalence classes of Sn under ∼, denoted by Ŝn := Sn/ ∼,
endowed with d(n) is a metric space.

A discrete metric space (S, ρ) (i.e. a metric space S with metric ρ : S×S →
N0 := N ∪ {0}) is said to be a discrete geodesic space, if for any two points
x, y ∈ S, there exists a finite subset of S containing x and y that is isometric
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with the discrete line segment [0, 1, ..., ρ(x, y)] (N0 is endowed with the standard
metric dist(m,n) := |m − n|). In other words, it is a geodesic space if for any
two points x, y ∈ S with ρ(x, y) = k ∈ N0, there exists a finite chain of length
k in S, namely z0 = x, z1..., zk = y, such that ρ(zi, zi+1) = 1, for i = 0, ..., k− 1.
Any chain in S with this property is called a geodesic between x and y. Indeed,
a countable metric space is a discrete geodesic if and only if it is isometric
with a connected graph. Of course, one side of this is more obvious. For the
other side (sufficiency), construct a graph G from a countable discrete geodesic
metric space (S, ρ) whose vertices are points of S and a pair of points x, y ∈ S
are connected by an edge if ρ(x, y) = 1. The graph G endowed with the graph
distance is isometric with (S, ρ), as the shortest paths between two vertices x, y
coincide with the geodesics between x, y ∈ S.

When a discrete metric space (S, ρ) is not geodesic, as for the case of Ŝn
endowed with bp-distance [7], the concept of a geodesic between two points x
and y can be extended to the concept of a partial geodesic or geodesic patch
(p-geodesic) [7], that is a maximal subset of S containing x and y which is
isometric to a subsegment (not necessarily contiguous) of the line segment
[0, ..., ρ(x, y)]. In other words, a p-geodesic between x and y is a maximal chain
z0 = x, z1, ..., zk = y in S such that∑

i

ρ(zi, zi+1) = ρ(x, y).

Note that the former form of the definition is very general and can be extended
to general metric spaces, i.e. for a general metric space a p-geodesic between
two points x and y is the maximal subset of the metric space which can be
isometrically embedded into the real interval [0, ρ(x, y)] (where R+ is endowed
with the Euclidean topology). Since, our spaces of interest are the finite sym-
metric groups, we only work on discrete metric spaces in this paper, and so the
second form of the definition for p-geodesics is suitable for us.

For any two points x, y in an arbitrary metric space (S, ρ) there exists at least
one p-geodesic between them, since the trivial chain of length one, z0 = x, z1 =
y, always exists. If this chain is maximal then the p-geodesic z0 = x, z1 = y
is called trivial. Only non-trivial p-geodesics, those containing at least three
points of the space, are interesting for us. Any point on a p-geodesic between
x and y is called a geodesic point of x and y. In the case of permutations (or
permutation classes), we also call a geodesic point, a geodesic permutation (or a
geodesic permutation class). Note that any geodesic is a p-geodesic, and for any
geodesic point of x and y, say z, we have ρ(x, y) = ρ(x, z) + ρ(z, y). We denote
by [x, y]S the set of all geodesic points of x and y in a metric space (S, ρ), and

in particular for x, y ∈ Sn, we denote by [x, y]
∗

or [[x], [y]]
∗

= [u, v]
∗

the set of
all geodesic points of u = [x], v = [y] ∈ Ŝn, that is the set of all permutation
classes lying on partial geodesics connecting [x] and [y] in Ŝn. In addition, for
x, y ∈ Sn, we denote

[x, y] := {z ∈ Sn : d(n)(x, y) = d(n)(x, z) + d(n)(z, y)}.
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In other words, z ∈ [x, y] if and only if [z] ∈ [x, y]
∗
. For a metric (or pseudo-

metric) space (S, ρ), let us define the total distance of a point x ∈ S to a finite
subset A ⊂ S by

ρT (x,A) :=
∑
y∈A

ρ(x, y).

A median of a finite subset A ⊆ S is a point of S (not necessarily unique) whose
total distance to A takes the infimum (respectively, minimum for a finite space
S), i.e. a point x ∈ S such that

ρT (x,A) = inf
y∈S

ρT (y,A).

For the finite space S, “inf ” is replaced by “min” in the above definition,
that is x ∈ S is a median of A if it minimizes the total distance function
ρT (., A). Furthermore, the median value of A, denoted by µ(A), is the infimum
(respectively, minimum) value of the total distance function to A. We denote by

MS,ρ(A) the set of all medians of A ⊂ S. In particular, we denote by d
(n)
T (x,A)

the total breakpoint distance of permutation x ∈ Sn to A ⊂ Sn, and byMn(A)
the set of all breakpoint medians of A, that is Mn(A) := MSn,d(n)(A). There
always exists a median (not necessarily unique) for any subset of a finite metric
space, while this is not true for general infinite metric spaces. In the simple case
of two points x and y in a general metric space, it is clear from the definition
that every median of x and y is a geodesic point of them and vice versa. That
is, [x, y]S is the set of medians of x and y.

Medians play an important role in small and large phylogeny problems. In
some evolutionary models, at least one of the medians of some species car-
ries valuable information about their first common ancestor or even about the
phylogenetic tree. According to some simulation studies, when the symmetric
group is endowed with the bp-distance, Haghighi et al. [5] conjectured that a
major proportion of bp medians of k random permutations lie around these k
random permutations (corners). Therefore, it seems hard to find a median far
from any of these k random permutations. Jamshidpey et al. [7] investigated
this further and found a family of bp median points using the new concept of
accessible points. This concept may also help to find a median far from all
random permutations. More precisely, let X be a subset of Ŝn. Following [7],
we say z ∈ Ŝn is 1-accessible from X if there exists a natural number m, a finite
sequence y1, ..., ym ∈ X, and a finite sequence z1 = y1, ..., zm = z ∈ Ŝn such that

zi+1 ∈ [zi, yi+1]
∗
, for i = 1...m−1 (See Fig. 1). The set of all 1-accessible points

of X is denoted by Z(X). Let Z0(X) := X, and, by induction, for r ∈ N0, let
Zr+1(X) := Z(Zr(X)). By definition, we have⋃

x,y∈Zr(X)

[x, y]
∗
⊂ Zr+1(X).

A permutation class z is accessible from X if there exists a natural number r
such that z ∈ Zr(X). We denote the set of all accessible points by Z̄(X) =
∪r∈N0

Zr(X).
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X
= z1

= z

Ŝn

y1
y2 y3

y5

y6

z2 z3
z4

xi
xj xk

z5

x1

x2

x3

x4
x5

x6

x7

x8

x9

x10

z2

z3

z4

z5
z6

z7 = z

Figure 1: Accessibility for 10 points: original definition (Figure from [6]).

Here we represent accessible points in a slightly more illustrative way. That
is, for a set of given permutation classes X, let

Z(X) =
⋃

x,y∈X
[x, y]

∗
. (1)

Then setting Z0(X) := X, by induction, we define Zk+1(X) = Z(Zk(X)) for
k ∈ N0, that is

Zk+1(X) :=
⋃

x,y∈Zk(X)

[x, y]
∗
.

Finally, the set of all accessible points is defined by

Z̄(X) :=
⋃
n∈N0

Zn(X).

Obviously, these two definitions are not restricted to the case of the symmetric
groups and can be considered for a general metric (pseudometric) space (S, ρ).

We only need to replace Ŝn and [., .]
∗

by S and [., .]S , respectively. The latter
definition gives a new representation of the former notion of accessibility, and,
in fact, we can see that these two definitions are equivalent, in general. We have
the following proposition.

Proposition 1. Let S be a metric space, then Z̄(X) = Z̄(X), for any X ⊂ S.

To prove the above proposition, we need the following lemmas.

Lemma 1. For X ⊂ Y ⊂ S, we have Z(X) ⊂ Z(Y ).

Proof. By definition of Z(X), it is clear that Z(X) ⊂ Z(Y ). Also, if z ∈ Z(Y ),
then there exists x, y ∈ Y such that z ∈ [x, y]S . Therefore, z is a 1-accessible
point of Y , i.e. z ∈ Z(Y ).

Lemma 2. Let X ⊂ S be such that for any x, y ∈ X, [x, y]S ⊂ X, then
Z(X) = Z(X) = X. In particular, Z(Z̄(X)) = Z(Z̄(X)) = Z̄(X).
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Proof. From the last lemma, it is sufficient to prove Z(X) = X, and this is
itself clear by definition, as if z ∈ Z(X), then there exists m ∈ N, a finite
sequence y1, ..., ym ∈ X, and a finite sequence z1 = y1, ..., zm = z ∈ S such that
zi+1 ∈ [zi, yi+1]S . Hence, by assumption, z1, ..., zm = z are all in X. Now, for
any two points x, y ∈ Z̄(X), there exists k ∈ N such that x, y ∈ Zk(X), and
thus, [x, y]S ∈ Zk+1(X) ⊂ Z̄(X). This completes the proof.

Proof of Proposition 1. By Lemma 1, Z(X) ⊂ Z(X), and hence by induction
and applying the same lemma repeatedly, we have Zk(X) ⊂ Zk(X), for any k ∈
N. Therefore, Z̄(X) ⊂ Z̄(X). To prove the other side, let z ∈ Z(X) = Z1(X).
There exist m ∈ N, y1, ..., ym+1 ∈ X, and z1 = y1, ..., zm+1 = z ∈ S such that
zi+1 ∈ [zi, yi+1]S . Thus, for i = 2, ...,m + 1, zi ∈ Zi−1(X), and in particular,
z ∈ Zm(X), and hence Z1(X) ⊂ Z̄(X). Now, by Lemma 1 and Lemma 2,

Z2(X) = Z(Z1(X)) ⊂ Z(Z̄(X)) = Z̄(X).

Repeating this argument, for any r ∈ N0, Zr(X) ⊂ Z̄(X) and therefore, Z̄(X) ⊂
Z̄(X).

We say m ∈ N0 is the order of accessibility of a set X in a metric space S,
if m is the minimum number such that Zm(X) = Zm+r(X), for any r ∈ N0. In
other words, m is the order of accessibility of X, if it is the minimum number
such that Z̄(X) = Zm(X). If there is no such number, we say the order of
accessibility of X is∞. In the case that S is a finite metric space, as in the case
of Ŝn endowed with the bp metric, the order of accessibility of any subset of S
is finite. As an example, let A be a bounded closed convex subset of S = R

n

(endowed with the Euclidean topology), and let ∂A be its boundary. Then the
order of accessibility of ∂A is 1, and Z̄(∂A) = A.

It is shown in [7] that for k permutations {x1, ..., xk} in Sn with maximum
distance n−1 between any two of them, a permutation x is a median if and only
if Ax ⊂ Ax1,...,xk

. The situation is similar for k random permutations, since the
expected number of common adjacencies for any two random permutations is
very small [7]. On the other hand, for x, y ∈ Sn, a permutation π lies on [x, y]
if and only if

Ax,y ⊂ Aπ ⊂ Ax ∪ Ay
(see Lemma 2 [7]). This shows that the idea of accessible points can be useful
in order to find a median far from corners. For example, in the case of three
permutations with maximum distance n− 1 from each other, we can start from
two of them, say x and y, and find a permutation π ∈ [x, y] that is not very
close to x and y. This must be done by choosing carefully adjacencies from both
x and y (including all common adjacencies of them in the case of three random
permutations) such that these adjacencies together construct permutation π.
Then we should try to pick some of the adjacencies of π (with a sufficient number
of adjacencies from each of x and y) and also pick some adjacencies from the
third permutation, say z, to construct a permutation far from all x, y, z whose
set of adjacencies is contained in Ax ∪Ay ∪Az, and therefore it is a median of
these three points.
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Common adjacencies of permutations can be regarded as a set of segments.
A segment (of Sn) is a set of consecutive adjacencies of a permutation of length
n. More explicitly, a segment of length k ∈ [n− 1] is a set of adjacencies

{{n0, n1}, {n1, n2}, ..., {nk−2, nk−1}, {nk−1, nk}},

where n0, n1, ..., nk ∈ [n] are different natural numbers. It can also be denoted
by [n0, n1, ..., nk] or equivalently by [nk, ..., n1, n0]. In particular, any segment
of length n−1 is the set of adjacencies of a permutation class and vice versa. By
convention, we assume that the empty set ∅ is a segment. We say a segment s is a
subsegment of a segment s′ if s ⊂ s′. For a given permutation π = π1 ... πn ∈ Sn,
for i ≤ j, the segment [πi, πi+1, ..., πj ] = [πj , ..., πi+1, πi] is denoted by sij = sπij
and is called a segment of π. We denote by |s| the length of a segment s. For
a segment s := [n0, ..., nk] , n0 and nk are called end points, and n1, ..., nk−1

are called intrinsic points of the segment. Any point (number) which is not
either an end point or an intrinsic point of s is called an isolated point with
respect to s. We denote by End(s), Int(s), and Iso(s), the set of end points,
intrinsic points, and isolated points of s, respectively. Note that a segment is
originally defined as a set of adjacencies and therefore all set operations can
be applied on it. Two segments s = [n0, ..., nk] and s′ = [m0, ...,mk′ ] are said
to be strongly disjoint if {n0, ..., nk} ∩ {m0, ...,mk′} = ∅. They are disjoint if
s ∩ s′ = ∅, otherwise we say that they intersect.

Also, by a set of segments (segment set) of Sn, we mean the union of some
pairwise strongly disjoint segments of Sn. In other words, a set of segments or
a segment set I is a subset of Aπ for a permutation class π. In this case, we say
I is a segment set of π or π contains I. It is clear that a segment set can be
contained in more than one permutation, or in other words, it can be contained
in the intersection of adjacencies of several permutations. By a segment (or
component) of a segment set I we mean a maximal segment contained in I, and
to show a segment s is a segment of I, we denote s∈̂I. Although a segment set I
containing segments s1, ..., sk is in principle the union of adjacencies of si’s, that
is I = ∪ki=1si, to ease the notation, we sometime denote it by {s1, ..., sk}. Also
we denote by ‖I‖ := k, the number of segments of I. Note that the notation
| . | is used for both cardinality of a set and absolute value of a real number. For
example, as we already indicated for a segment s, |s| is the number of adjacencies
of s, and, by the original definition of a segment set as a union of segments,

|I| =
‖I‖∑
i=1

|si|

is the number of adjacencies of I. Also, we frequently use, | . | for sets such as
End(s), Int(s), and Iso(s), to indicate their cardinality.

Denote by I(n)
m,k the set of all segment sets of Sn with m adjacencies and k

segments, i.e. I(n)
m,k is the set of all segment sets I with |I| = m and ‖I‖ = k.

Similarly, let I(n)
m be the set of all segment sets of Sn with m adjacencies.
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Finally, denote by I(n), the set of all segment sets of Sn. Note that I(n)
m,k may

be empty for some m, k, n. To have I(n)
m,k non-empty, it is necessary to have

k ≤ m ≤ n− k,

where the last inequality holds since for a segment set I ∈ I(n)
m,k and for any

arbitrary permutation π containing I, there should be at least k−1 adjacencies
of π that are not used in I in order to separate k segments of I, and therefore
m should be bounded by (n− 1)− (k − 1) = n− k.

It is clear that the intersection of segments (and in general, the intersec-
tion of segment sets) is always a segment set. Two segment sets I and J (in
particular two segments s and s′, respectively) are said to be consistent, if
their union is contained in Aπ, for a permutation class π. In particular, any
two segment sets of a permutation π are consistent. For example, for n = 10,
two segments [3, 7, 10, 2, 5] and [2, 5, 8, 1] are consistent and their union is the
segment [3, 7, 10, 2, 5, 8, 1], while two segments [2, 6, 3, 8, 1] and [8, 1, 4, 7, 6, 3, 5]
are not consistent. When we speak of the union of two or more segment sets
(respectively, two or more segments) we always assume that they are pairwise
consistent. We say segment sets I1, ..., Ik complete each other if there exists a
permutation π such that ∪ki=1Ii = Aπ. The complement of a segment set I
contained in a permutation π, is Īπ := Aπ \ I. In other words, for a segment
set I = {sπi1j1 , s

π
i2j2

, ..., sπikjk} contained in π, Iπ = {sπj0i1 , s
π
j1i2

, ..., sπjkik+1
}, with

j0 = 1, ik+1 = n. For r = 1, ..., k + 1, we denote by I
(r)

π the r-th segment of

Iπ on π from left, that is I
(r)

π = sπjr−1ir
. When we write Īπ, we assume that I

is contained in π. We can extend the notions of end point, intrinsic point, and
isolated point to the case of segment sets as follows. A number u ∈ {1, ..., n}
is an end point (respectively, an intrinsic point) of a non-empty segment set
I = {s1, ..., sl} if it is an end point (respectively, an intrinsic point) of exactly
one of the segments of I. It is an isolated point of I if it is neither an end
point nor an intrinsic point of I, or equivalently if it is an isolated point of all
of segments of I. In other words, using the same notations of End(I), Int(I)
and Iso(I) for these three types of points for the segment set I, we have

End(I) =
⋃
s∈̂I

End(s)

Int(I) =
⋃
s∈̂I

Int(s)

Iso(I) =
⋂
s∈̂I

Iso(s)

When I is the empty segment set, we define End(I) = Int(I) = ∅ and Iso(I) =
[n]. For example, when n = 10, I = {[2, 3, 9, 4], [5, 6]} is a segment set having
3, 9 as its intrinsic points, 2, 4, 5, 6 as its end points, and 1, 7, 8, 10 as its isolated
points. We say two segments s, s′∈̂I are neighbours with respect to π, if there
exist i < j such that πi, πj ∈ End(s)∪End(s′) and for any k with i < k < j (if
there is any), πk ∈ Iso(I). We say a segment s connects two disjoint segments
s1 and s2, if s1 ∪ s ∪ s2 is a segment.
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Given a segment set I of id, our goal is to count the number of all permu-
tations x ∈ Sn such that there exists a permutation π ∈ [id, x] \ {id, x} 6= ∅
containing I such that Aπ \ I is a segment set in x. In order to find all per-
mutations x with this property, it is convenient to classify the adjacencies of
any permutation x ∈ Sn with respect to I. This classification should show all
possible ways that every adjacency of x may be used to construct such a per-
mutation π. We say the adjacency {xi, xi+1} is 2-free-end, with respect to I,
if xi and xi+1 are both isolated points of I. It is called 1-free-end, w.r.t. I, if
either xi or xi+1 is an isolated point of I, and the other is an end point of I. It
is a trivial segment, w.r.t. I, if xi and xi+1 are both end points of I. Finally,
{x1, xi+1} is 0-free-end, w.r.t. I, if either xi or xi+1 is an intrinsic point of I. In
order to construct a permutation π containing I such that π ∈ [id, x], Īπ should
be contained in x. We see that this is an important observation to count the
number of permutations x having a permutation π ∈ [id, x] far from id and x.

3 Analysis of the adjacency types

Let I be a segment set of Sn. We define Xn(I) to be the set of all permutations x
containing a segment set J such that I∩J = ∅ and I∪J = Aπ for a permutation
π. Equivalently, letting

Cn(I) = {J ∈ I(n) : ∃π ∈ Sn s.t. I ∩ J = ∅, I ∪ J = Aπ},

and
Rn(J) = {π ∈ Sn : J ⊂ Aπ}, forJ ∈ I(n),

we have
Xn(I) =

⋃
J∈Cn(I)

Rn(J).

Note that when I is a segment set of id, this definition does not guarantee that
π ∈ [id, x], and in order to have this property, π, in addition, must include
all adjacencies of Aid,x. This motivates us to denote by X̄n(I) the set of all

permutations x for which there exists a permutation π ∈ [id, x] whose set of
adjacencies can be decomposed into disjoint segment sets I and J , i.e. I ∪ J =
Aπ, such that J is contained in x. In fact, J serves as Īπ, the complement of I
w.r.t. π, and by definition X̄n(I) ⊂ Xn(I). Therefore, counting the number of
elements in Xn(I) gives an upper bound for |X̄n(I)|.

To be able to have such a permutation π, x should contain a segment set J
as described above. Then our strategy to count the number of permutations in
Xn(I) is, firstly, to find every possible segment set J that can be the complement
of I w.r.t. a permutation π such that Aπ = I ∪ J , and secondly for each such
segment set J , to count the number of all possible permutations x containing
J . Note that for two different segment sets J and J ′ with the above property,
the set of permutations containing J and the set of permutations containing J ′

do not intersect, and thus considering all possibilities of the segment J gives us
a partitioning of Xn(I). An easy observation is that |‖I‖−‖J‖| ≤ 1, and hence
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there are three possibilities for the number of segments in J . On the other hand,
all isolated points of I, except at most two of them, are intrinsic points of J and
vice versa. So this makes it clear how to construct J . Basically, depending on
the value of ‖I‖ − ‖J‖, we take at most two isolated points of I and consider
them as end points of J . The other end points of J are chosen from the set of
end points of I, in an appropriate way. Also, the rest of the isolated points of
I will be used as intrinsic points of J . Once J is determined, it is easy to see
that the number of ways one can complete J in order to construct x depends
on ‖I‖ − ‖J‖ and not J itself. This makes it easy to compute the cardinality
of Xn(I), as is indicated in Section 4. When it is clear, we drop “n” from the
subscript of X.

Motivated by above explanations, to construct a permutation π in [id, x] con-
taining I such that Īπ is contained in x, we cannot use any 0-free-end adjacency
of x w.r.t. I, since both numbers in the extremities of this type of adjacency
are already used in I as its intrinsic points. Therefore, to be able to construct
π with this property, we must take 2-free-end adjacencies of x w.r.t I, to choose
the segment set J contained in x as mentioned above. Both the other two types
of adjacencies, i.e., 1-free-end and trivial segment adjacencies, can be used only
as extremities of segments of J . More precisely, a 1-free-end adjacency of x
w.r.t I may be used in extremities of segments of any size in J , while a trivial
segment adjacency of x w.r.t. I may be used only as a segment of length 1 in
J . In this section, we compute the expected number (Theorem 1) and variance
(Theorem 2) of all four types of adjacencies of a random permutation w.r.t. a
random segment contained in id, and establish a convergence (in probability)
theorem for them. Following this, we study the possibility of constructing a
permutation π in [id, x] containing segment set I from identity such that Iπ is
contained in x.

The following proposition will be used to prove some of our main results.

Proposition 2. Given a permutation x ∈ Sn, there exist(
m− 1
k − 1

)
·
(
n−m
k

)
segment sets of x with k > 0 non-empty segments and m ≤ n− 1 adjacencies.

Proof. Consider a segment set I = {s1, ..., sk}, with k non-empty segments and
m adjacencies that is contained in x ∈ Sn. Then |‖Ix‖−k| ≤ 1, and therefore we
represent the segments of Ix by s′1, ..., s

′
k+1, where s′j is non-empty for 2 ≤ j ≤ k,

and s′1 and s′k+1 may be empty. Note that
k∑
i=1

|si| = m and
k+1∑
j=1

|s′j | = n− 1−m

with |si| ≥ 1 for 1 ≤ i ≤ k and |s′j | ≥ 1 for 2 ≤ j ≤ k. Hence, the number of
solutions for these two equations is equal to:

(
m− k + (k − 1)

k − 1

)
·
(
n− 1−m− (k − 1) + (k + 1− 1)

(k + 1− 1)

)
=

(
m− 1
k − 1

)
·
(
n−m
k

)
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In other words, that is the number of ways we can choose k segments with
m adjacencies of x.

We assume that all random elements and variables are defined on a prob-
ability space (Ω,P,F), and denote by E[ . ] and V ar( . ), the expected value
and variance of a random variable, respectively. We denote by ξ(n), a permu-

tation chosen uniformly at random from Sn, and by I
(n)
m a segment set chosen

uniformly at random from I(n)
m . Similarly, let us denote by I

(n)
m,k a segment set

chosen uniformly at random from I(n)
m,k, and let A

(n)
m,k be the event that I

(n)
m has

k segments, that is A
(n)
m,k := {I(n)

m ∈ I(n)
m,k}. We also assume that ξ(n), I

(n)
m , and

I
(n)
m,k are independent. Let α, β, γ, δ be functions

α, β, γ, δ :
⋃
n∈N

(Sn × I(n))→ N0,

such that, for x ∈ Sn and a segment set of Sn, namely I, let α(x, I), β(x, I),
γ(x, I) and δ(x, I) be the number of 2-free-end adjacencies, 1-free-end adja-
cencies, trivial segments, and 0-free-end adjacencies of x w.r.t. I, respec-

tively. In particular, let α
(n)
m := α(ξ(n), I

(n)
m ), β

(n)
m := β(ξ(n), I

(n)
m ), γ

(n)
m :=

γ(ξ(n), I
(n)
m ) and δ

(n)
m := δ(ξ(n), I

(n)
m ). Similarly, let α

(n)
m,k := α(ξ(n), I

(n)
m,k),

β
(n)
m,k := β(ξ(n), I

(n)
m,k), γ

(n)
m,k := γ(ξ(n), I

(n)
m,k) and δ

(n)
m,k := δ(ξ(n), I

(n)
m,k). When

there is no risk of confusion, we drop “n” from the superscripts.

Theorem 1. Let m = m(n) and k = k(n) be such that 0 < k ≤ m < n, and let
I be an arbitrary segment set in Im,k. Then

E[αm|Am,k] = E[αm,k] = E[α(ξ, I)] =
(n−m− k)(n−m− k − 1)

n
,

E[βm|Am,k] = E[βm,k] = E[β(ξ, I)] =
4k(n−m− k)

n
,

E[γm|Am,k] = E[γm,k] = E[γ(ξ, I)] =
2k(2k − 1)

n
,

E[δm|Am,k] = E[δm,k] = E[δ(ξ, I)] =
(m− k)(2n−m+ k − 1)

n
.

(2)
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Furthermore,

E[αm] =
(n−m)(n−m− 1)2(n−m− 2)

n(n− 1)(n− 2)
,

E[βm] =
4m(n−m)(n−m− 1)2

n(n− 1)(n− 2)
,

E[γm] =
2m(n−m)(2m(n−m) + n)

n(n− 1)(n− 2)
,

E[δm] =
m(m− 1)(2n2 − 6n−m2 + 3m+ 2)

n(n− 1)(n− 2)
.

(3)

Proof. For i = 1, ..., n − 1, let α̂m,i, β̂m,i, γ̂m,i and δ̂m,i be random variables
such that α̂m,i = 1 if the i-th adjacency of ξ, i.e. {ξi, ξi+1}, is 2-free-end w.r.t.

Im and α̂m,i = 0 otherwise; β̂m,i = 1 if the i-th adjacency of ξ is 1-free-end

w.r.t. Im and β̂m,i = 0 otherwise; γ̂m,i = 1 if the i-th adjacency of ξ is a trivial

segment and γ̂m,i = 0 otherwise; and δ̂m,i = 1 if the i-th adjacency of ξ is

0-free-end and δ̂m,i = 0 otherwise. Then, for every i = 1, ..., n− 1, we have:

P(α̂m,i = 1|Am,k) = P(α̂m,i = 1|Im = I) =
(n−m− k)(n−m− k − 1)

n(n− 1)
,

P(β̂m,i = 1|Am,k) = P(β̂m,i = 1|Im = I) =
4k(n−m− k)

n(n− 1)
,

P(γ̂m,i = 1|Am,k) = P(γ̂m,i = 1|Im = I) =
2k(2k − 1)

n(n− 1)
,

P(δ̂m,i = 1|Am,k) = P(δ̂m,i = 1|Im = I) =
(m− k)(2n−m+ k − 1)

n(n− 1)
.

Therefore,

E[αm|Am,k] = E[αm,k] = E[α(ξ, I)] =

n−1∑
i=1

P(α̂m,i = 1|Am,k) =
(n−m− k)(n−m− k − 1)

n
.

The other conditional expected values of (2) are proved similarly.
From Proposition 2, the probability that Am,k occurs is

P(Am,k) =

(
m− 1
k − 1

)(
n−m
k

)
(
n− 1
m

) .
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Therefore, by averaging over k, we have

E[αm] =

m∑
k=1

(n−m− k)(n−m− k − 1)

n

(
m− 1
k − 1

)(
n−m
k

)
(
n− 1
m

)
=

(n−m)(1 +m− n)2(n−m− 2)

(n− 2)(n− 1)n
,

E[βm] =
m∑
k=1

4k(n−m− k)

n

(
m− 1
k − 1

)(
n−m
k

)
(
n− 1
m

) =
4m(n−m)(1 +m− n)2

(n− 2)(n− 1)n
,

E[γm] =

m∑
k=1

2k(2k − 1)

n

(
m− 1
k − 1

)(
n−m
k

)
(
n− 1
m

) =
2m(n−m)(2m(n−m) + n)

(n− 2)(n− 1)n
,

and

E[δm] =

m∑
k=1

(m− k)(2n−m+ k − 1)

n

(
m− 1
k − 1

)(
n−m
k

)
(
n− 1
m

)
=
m(m− 1)(2n2 − 6n−m2 + 3m+ 2)

n(2− 3n+ n2)
.

Theorem 2. Let m = m(n) and k = k(n) be such that 0 < k ≤ m < n, and let
I be an arbitrary segment set in Im,k. Then

V ar(αm,k) = V ar(α(ξ, I)) = E[αm,k](1−E[αm,k]) +
(n−m− k)(n−m− k − 1)2(n−m− k − 2)

n(n− 1)

= (1−
m+ k

n
)2(

m+ k

n
)2n+ o(n),

V ar(βm,k) =V ar(β(ξ, I)) = E[βm,k](1−E[βm,k]) +
4k(n−m− k)((n−m− k − 1)(4k − 1) + 2k − 1)

n(n− 1)

= 4
k

n
(1−

m+ k

n
)(
k

n
(3−

4k

n
) +

m

n
(1−

4k

n
))n+ o(n),

V ar(γm,k) =V ar(γ(ξ, I)) = E[γm,k](1−E[γm,k]) +
2k(2k − 1)2(2k − 2)

n(n− 1)
= 4(1−

2k

n
)2(

k

n
)2n+ o(n),
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V ar(δm,k) =V ar(δ(ξ, I)) = E[δm,k](1−E[δm,k])

+
(m− k)[(m− k − 1)(2n−m+ k − 2)(2n−m+ k − 3) + 2(n− 2)(n− 1)]

2n(n− 1)

= (
m− k
n

)2(1−
m− k
n

)2n+ o(n).

Furthermore,

V ar(αm) = E[αm](1−E[αm])+

m∑
k=1

(n−m− k)(n−m− k − 1)2(n−m− k − 2)

n(n− 1)
P(Am,k) =

(1−
m

n
)4(

m

n
)2(8 +

m

n
(−12 +

5m

n
))n+ o(n),

V ar(βm) = E[βm](1−E[βm])+

m∑
k=1

4k(n−m− k)((n−m− k − 1)(4k − 1) + 2k − 1)

n(n− 1)
P(Am,k) =

4(1−
m

n
)3(

m

n
)2(8−

m

n
(31 +

4m

n
(−11 +

5m

n
)))n+ o(n),

V ar(γm) = E[γm](1−E[γm]) +
m∑
k=1

2k(2k − 1)2(2k − 2)

n(n− 1)
P(Am,k) =

4(1−
m

n
)2(

m

n
)2(1− 4(1−

m

n
)(
m

n
)(1 + 5(1−

m

n
)
m

n
))n+ o(n),

V ar(δm) = E[δm](1−E[δm])

+

m∑
k=1

(m− k)[(m− k − 1)(2n−m+ k − 2)(2n−m+ k − 3) + 2(n− 2)(n− 1)]

2n(n− 1)
P(Am,k) =

(
m

n
)2(1− (

m

n
)2)2(4 +

m

n
(−8 +

5m

n
))n+ o(n),

where P(Am,k) =

(
m− 1
k − 1

)(
n−m
k

)
(

n− 1
m

) .

Proof. For i = 1, ..., n− 1, recall the definition of α̂m,i, β̂m,i, γ̂m,i and δ̂m,i from

the proof of Theorem 1, and similarly, let α̂m,k,i, β̂m,k,i, γ̂m,k,i and δ̂m,k,i be
random variables such that α̂m,k,i = 1 if the i-th adjacency of ξ, i.e. {ξi, ξi+1}, is

2-free-end w.r.t. Im,k and α̂m,k,i = 0 otherwise; β̂m,k,i = 1 if the i-th adjacency

of ξ is 1-free-end w.r.t. Im,k and β̂m,k,i = 0 otherwise; γ̂m,k,i = 1 if the i-th
adjacency of ξ is trivial segment w.r.t. Im,k and γ̂m,k,i = 0 otherwise; and

δ̂m,k,i = 1 if the i-th adjacency of ξ is 0-free-end w.r.t. Im,k and δ̂m,k,i = 0
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otherwise. Then, for every i = 1, ..., n− 1, we have:

E[α2
m,k] =

∑
i

E[α̂2
m,k,i] + 2

∑
i>j

E[α̂m,k,iα̂m,k,j ] =∑
i

P(α̂2
m,k,i = 1) + 2

∑
i>j

P(α̂m,k,iα̂m,k,j = 1) =∑
i

P(α̂m,k,i = 1) + 2
∑
i>j

P(α̂m,k,iα̂m,k,j = 1) =

E[αm,k] + 2
∑
i>j

P(α̂m,k,iα̂m,k,j = 1).

Now, note that:

∑
i>j+1

P(α̂m,k,iα̂m,k,j = 1) =
∑
i>j+1

(n−m− k)(n−m− k − 1)(n−m− k − 2)(n−m− k − 3)

n(n− 1)(n− 2)(n− 3)

=
(n−m− k)(n−m− k − 1)(n−m− k − 2)(n−m− k − 3)

2n(n− 1)
,

and∑
i=j+1

P(α̂m,k,iα̂m,k,j = 1) =
∑
i=j+1

(n−m− k)(n−m− k − 1)(n−m− k − 2)

n(n− 1)(n− 2)

=
(n−m− k)(n−m− k − 1)(n−m− k − 2)

n(n− 1)
.

Hence,

V ar(αm,k) = E[α2
m,k]− (E[αm,k])2

= E[αm,k](1−E[αm,k]) +
(n−m− k)(n−m− k − 1)2(n−m− k − 2)

n(n− 1)
.

Exactly the same calculations give V ar(α(ξ, I)). Similarly we can compute
V ar(βm,k) = V ar(β(ξ, I)), V ar(γm,k) = V ar(γ(ξ, I)) and V ar(δm,k) = V ar(δ(ξ, I)).

Now to compute V ar(αm) write

E[α2
m] =

∑
i

E[α̂2
m,i] + 2

∑
i>j

E[α̂m,iα̂m,j ] =
∑
i

P(α̂2
m,i = 1) + 2

∑
i>j

P(α̂m,iα̂m,j = 1) =∑
i

P(α̂m,i = 1) + 2
∑
i>j

P(α̂m,iα̂m,j = 1) = E[α] + 2
∑
i>j

P(α̂m,iα̂m,j = 1).

Now, we note that:

∑
i>j+1

P(α̂m,i · α̂m,j = 1) =

∑
i>j+1

m∑
k=1

(n−m− k)(n−m− k − 1)(n−m− k − 2)(n−m− k − 3)

n(n− 1)(n− 2)(n− 3)
P(Am,k)

=

m∑
k=1

(n−m− k)(n−m− k − 1)(n−m− k − 2)(n−m− k − 3)

2n(n− 1)
P(Am,k),
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and

∑
i=j+1

P(α̂m,iα̂m,j = 1) =
∑
i=j+1

m∑
k=1

(n−m− k)(n−m− k − 1)(n−m− k − 2)

n(n− 1)(n− 2)
P(Am,k)

=

m∑
k=1

(n−m− k)(n−m− k − 1)(n−m− k − 2)

n(n− 1)
P(Am,k).

Therefore,

V ar(αm) = E[α2
m]− (E[αm])2

= E[αm](1−E[αm]) +

m∑
k=1

(n−m− k)(n−m− k − 1)2(n−m− k − 2)

n(n− 1)
P(Am,k)

= E[αm](1−E[αm])

+
(n−m)(n−m− 1)2(n−m− 2)2(n−m− 3)

(
n2 − 5n+ 4− 2mn+m(m+ 7)

)
n(n− 1)2(n− 2)(n− 3)(n− 4)

= (1−
m

n
)4(

m

n
)2(8 +

m

n
(−12 + 5

m

n
))n+ o(n).

Similarly we can show that

V ar(βm) = E[β2
m]− (E[βm])2

= E[βm](1−E[βm]) +

m∑
k=1

4k(n−m− k)((n−m− k − 1)(4k − 1) + 2k − 1)

n(n− 1)
P(Am,k)

= E[βm](1−E[βm]) +

(
4m(m− n)(m− n+ 1)2

(n− 4)(n− 3)(n− 2)(n− 1)2n

)
×(

(1− 4m)n3 + (4m(3m+ 5)− 3)n2 − (m+ 1)(3m(4m+ 11) + 1)n+ 4(m+ 1)2(m(m+ 4) + 1)
)

= 4(1−
m

n
)3(

m

n
)2(8−

m

n
(31 + 4

m

n
(−11 + 5

m

n
)))n+ o(n),

V ar(γm) = E[γ2m]− (E[γm])2

= E[γm](1−E[γm]) +
m∑
k=1

2k(2k − 1)2(2k − 2)

n(n− 1)
P(Am,k) =

= E[γm](1−E[γm])

+
4(m− 1)m(m− n)(m− n+ 1)

(
4m4 − 8m3n+ 4m2

(
n2 + n+ 3

)
− 4mn(n+ 3) + n(n+ 9)− 4

)
(n− 4)(n− 3)(n− 2)(n− 1)2n

= 4(1−
m

n
)2(

m

n
)2(1− 4(1−

m

n
)(
m

n
)(1 + 5(1−

m

n
)
m

n
))n+ o(n),

and finally,
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V ar(δm) = E[δ2m]− (E[δm])2

= E[δm](1−E[δm])

+
m∑
k=1

(m− k)[(m− k − 1)(2n−m+ k − 2)(2n−m+ k − 3) + 2(n− 2)(n− 1)]

2n(n− 1)
P(Am,k)

= E[δm](1−E[δm])

+
(m− 1)m

(n− 4)(n− 3)(n− 2)(n− 1)2n
×
{

(m− 5)m
(
m
(
m3 − 10m2 +m+ 40

)
+ 4
)

+ 4(m− 4)(m+ 1)n4

+2(9− 23(m− 3)m)n3 + 2(m(m(51− 2(m− 8)m)− 235) + 50)n2

+2m(m(13(m− 8)m+ 121) + 170)n+ 2n5 − 152n+ 48
}

= (
m

n
)2(1− (

m

n
)2)2(4 +

m

n
(−8 +

5m

n
))n+ o(n).

We are ready to state a convergence theorem for all different types of adja-

cencies of ξ(n) w.r.t. I
(n)
m(n),k(n) or I

(n)
m(n). Let m : N → N and k : N → N be

such that 1 ≤ k(n) ≤ m(n) ≤ n− k(n), for any n ∈ N. Also, let (În)n∈N be an

arbitrary sequence of segment sets that În ∈ I(n)
m(n),k(n). Denote

α̃n := α(ξ(n), I
(n)
m(n)), and

ᾱn := α(ξ(n), I
(n)
m(n),k(n)).

Similarly, for n ∈ N, we define β̃n, γ̃n, δ̃n, and β̄n, γ̄n, δ̄n.

Theorem 3. Suppose m(n)
n → c and k(n)

n → c′, as n→∞. Then, as n→∞
α̃n

n

L2,p−→ (1− c)4,

β̃n

n

L2,p−→ 4c(1− c)3,

γ̃n

n

L2,p−→ 4c2(1− c)2,

δ̃n

n

L2,p−→ c2(2− c)2,

ᾱn

n
,
α(ξ(n), În)

n

L2,p−→ (1− c− c′)2,

β̄n

n
,
β(ξ(n), În)

n

L2,p−→ 4c′(1− c− c′),

γ̄n

n
,
γ(ξ(n), În)

n

L2,p−→ 4c′2,

δ̄n

n
,
δ(ξ(n), În)

n

L2,p−→ (c− c′)(2− c+ c′).
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Proof. First observe that, by Theorem 1, as n→∞,

E[
α̃n
n

]→ (1− c)4,

E[
β̃n
n

]→ 4c(1− c)3,

E[
γ̃n
n

]→ 4c2(1− c)2,

E[
δ̃n
n

]→ c2(2− c)2,

E[
ᾱn
n

] , E[
α(ξ(n), În)

n
]→ (1− c− c′)2,

E[
β̄n
n

] , E[
β(ξ(n), În)

n
]→ 4c′(1− c− c′),

E[
γ̄n
n

] , E[
γ(ξ(n), În)

n
]→ 4c′2,

E[
δ̄n
n

] , E[
δ(ξ(n), În)

n
]→ (c− c′)(2− c+ c′).

Also, following Theorem 2, the variances of all these sequences converge to 0.
Hence, the convergence in L2 and in probability holds.

Let I be a segment set of id(n). In order to construct a permutation x ∈
Xn(I), we need to find a segment set of Sn, namely J , such that I ∩ J = ∅ and
I ∪ J = Aπ, for a permutation π. Then, x is constructed by completing the
segment set J . Conversely, when a permutation x ∈ Xn(I) is given, an easy
observation shows that there exists at least one permutation π containing I such
that J = Aπ \ I ⊂ Ax and all 2-free-end adjacencies of x are used in π (Lemma
3). For the moment, let us denote by J

o
, the segment set of x containing all

2-free-end adjacencies of x w.r.t. I, and note that we must have J
o ⊂ J . So

in order to find the permutation π with the above property, we first take the
segment set I ∪ Jo

. In fact, Aπ \ (I ∪ Jo
) should still be a segment set of x,

and n− 1− |I| − |Jo| more adjacencies of x (1-free-end adjacencies and trivial

segments) should be taken in order to complete I ∪ Jo
. To analyse this further,

we define this more formally as follows. Let F be a function

F :
⋃
n∈N

(Sn × I(n))→ I(n),

where for any permutation x ∈ Sn and any segment set I ∈ I(n), F (x, I) is the

20



segment set of x containing all 2-free-end adjacencies of x w.r.t. I, that is

F (x, I) := {{l, l′} ∈ Ax : {l, l′} is 2− free− end}.

Let
Q :

⋃
n∈N

(Sn × I(n))→ N0,

where for (x, I) ∈ Sn × I(n), Q(x, I) is the number of adjacencies needed in
order to complete I ∪ F (x, I) to a permutation π, that is

Q(x, I) = n− 1− |I| − |F (x, I)|.

The following theorem restricts the range of Q(x, I), for x ∈ Xn(I).

Theorem 4. Let I ∈ I(n), and x ∈ Xn(I). Then

‖I‖ − 1 ≤ Q(x, I) ≤ 2‖I‖.

Before proving the above theorem, we introduce a new concept. Let I be
a segment set of Sn. The freedom factor of a point (number) k ∈ [n], is 0 if
k ∈ Int(I). It is 1, if k ∈ End(I). Finally, it is 2, if k ∈ Iso(E). Similarly,
the freedom factor of a segment s = [v1, ..., vl] = [vl, ..., v1] is denoted by u =<
u1, ..., ul >=< ul, ..., u1 >, where for each i ∈ [l], ui is the freedom factor of vi.
A segment s, with the freedom vector u is called a u-segment. Also, for π ∈ Sn
and i ∈ [n], the set of neighbours of i in π is defined by

Nπ(i) := {j ∈ [n] : {i, j} ∈ Aπ}.

For an arbitrary segment set of Sn, namely I, in order that x ∈ Xn(I), we need
to find a segment set J contained in x such that I ∪ J = Aπ and I ∩ J = ∅.
As we mentioned, J may not have all adjacencies of F (x, I). For instance, let
I = [4, 5, 6, 7] and x = 6 4 1 3 8 10 2 9 7 5. Then x ∈ X10(I) and J1 =
{[3, 1, 4], [7, 9, 2, 10, 8]} have the required property, while it does not contain
the adjacency {3, 8} ∈ F (x, I). However, even in this case, we see that there
are segment sets J2 = [9, 2, 10, 8, 3, 1, 4] and J3 = [1, 3, 8, 10, 2, 9, 7] including all
adjacencies of F (x, I) both with the required properties. In fact, in the following
lemma we can see that there are not many adjacencies of F (x, I) that can be
ignored in the construction of π from x and I.

Lemma 3. Let I be a segment set of I(n), and x ∈ Xn(I).

a) Let π ∈ Sn be such that I ⊂ Aπ, and Aπ \ I ⊂ Ax. Then either F (x, I) ⊂
Aπ \ I, or there exists an adjacency of F (x, I), namely e ∈ F (x, I) such
that F (x, I) \ {e} ⊂ Aπ \ I.

b) There always exists a permutation π ∈ Sn such that I ⊂ Aπ, and F (x, I) ⊂
Aπ \ I ⊂ Ax.
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Proof. Suppose {a, b} ∈ F (x, I) \ Aπ. As a, b ∈ Iso(I) and therefore the neigh-
bours of a in π should be from set Nx(a) \ {b} and the neighbours of b in π
should be from set Nx(b) \ {a}, we have |Nπ(a)|, |Nπ(b)| ≤ 1. But |Nπ(a)| and
|Nπ(b)| cannot be 0, since in that case a or b cannot be connected to the rest of
the numbers to construct π, and therefore |Nπ(a)| = |Nπ(b)| = 1 which means
that a and b are extremities of permutation π, i.e. {π1, πn} = {a, b}. In other
words, there may exist at most one adjacency {a, b} ∈ F (x, I)\Aπ. This proves
part (a). For part (b), suppose π′ ∈ [id, x] and there exists adjacency {a, b}
such that {a, b} ∈ F (x, I) \ π′. As we showed above {π′1, π′n} = {a, b}. Also,
as a and b are connected in π′ through a segment of π′ containing at least one
segment of I and this means that there exists at least one < 1, 2 >-adjacency
(< 1, 2 >-segment) in the segment of π′ connecting a to b, namely e, and hence
e is not in F (x, I). Therefore, we can construct a new permutation π by cutting
e in π′ and joining a to b. This proves part (b).

Proof of Theorem 4. The left inequality holds, since, when F (x, I) is an empty
segment set, we need at least ‖I‖− 1 < 1, 1 >-segments (trivial segments) from
x to complete π. To prove the right inequality, let π be a permutation such that
I ⊂ Aπ and F (x, I) ⊂ Aπ \I ⊂ Ax. From Lemma 3, we know that such π exists.
As the freedom of every number in any segment of F (x, I) is 2, for two segments
of F (x, I), say s1, s2, the segment of π that is located between them in π, say
s, should necessarily contain at least one segment of I. In fact, the freedom of
s cannot be < 2, 2, ..., 2 > (since in that case s1 ∪ s ∪ s2 should be a segment
of F (x, I) that is not supposed so) and then there must be at least a number
in the segment s with freedom 1, and this implies that a segment of I must be
contained in s. This yields that two segments of F (x, I) cannot be connected
to each other in π without using at least a segment of I between them. On the
other hand, let s1, s2 be two segments of I, and call the segment of π located
between them in π, s. If s does not contain a segment of F (x, I) and does not
contain a segment of I, then it must be either a < 1, 1 >-segment (i.e. a trivial
segment) or a < 1, 2, 1 >-segment. Lastly, let s1 be a segment of I and s2 be a
segment of F (x, I) and let s be a segment of π that is located between s1 and
s2 in π. If s does not contain a segment of I, it should be a < 1, 2 >-segment
necessarily. Putting all these together, we conclude that between each pair of
segments of I in π, say s1, s2, we may need either a < 1, 2, 1 >-segment of
Ax \F (x, I) or at most one segment of F (x, I). In the latter for each end of this
segment from F (x, I), we need a < 1, 1 >-segment of Ax \ F (x, I) to connect
it to s1 and s2. On the other hand, on the right-hand side (left-hand side) of
the most right (left) segment of I in π, we may place either a < 1, 2 >-segment
(< 2, 1 >-segment) or a < 1, 2 >-segment (< 2, 1 >-segment) followed by a
segment of F (x, I) on its right (on its left). So in general, we need at most 2
adjacencies of Ax\F (x, I) between each pair s1, s2∈̂I which are neighbours with
respect to π and in extremities we need at most one adjacency of Ax \ F (x, I).
In other words, we need at most 2(‖I‖−1)+2 = 2‖I‖ adjacencies of Ax\F (x, I)
in order to complete π. This finishes the proof.
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Figure 2: The value of E[α]/n (in green), E[β]/n (in dark blue), E[δ]/n (in light
blue) and E[γ]/n (in red), when we choose n

20 , 2n
20 , 3n

20 ..., 19n
20 adjacencies of id.

Let (În)n∈N be an arbitrary sequence of segment sets with |În| = m(n) and
‖În‖ = k(n) for n ∈ N. As we already saw, to have x ∈ Xn(În), it is necessary
to have k(n) ≤ m(n) ≤ n− k(n) and also by Theorem 4

‖În‖ − 1 ≤ Q(x, În) ≤ 2‖În‖.

Also, for x ∈ Xn(În), by definition we have,

Q(x, În) ≤ β(x, În) + γ(x, În).

Now suppose m(n)/n → c and k(n)/n → c′, as n → ∞, for c, c′ ∈ R+. Then
Theorem 3 implies that the right side of the above inequality converges to 4c′−
4cc′, in probability, as n goes to∞. Similarly, the left side of the last inequality
converges to 1− c− (1− c− c′)2, in probability, as n → ∞. Now suppose c, c′

is such that
1− c− (1− c− c′)2 > 4c′ − 4cc′.

Let ε << 1− c− (1− c− c′)2 − 4c′ + 4cc′. Then

P[ξ(n) ∈ Xn(În)] ≤
P[Q(ξ(n), În) ≤ β(ξ(n), În) + γ(ξ(n), În)] ≤
P[|Q(ξ(n),În)

n − (1− c− (1− c− c′)2)| > ε]+

P[|β(ξ(n),În+γ(ξ(n),În)
n − (4c′ − 4cc′)| > ε]→ 0,
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as n→ 0. So, to avoid this, we should assume 1− c− (1− c− c′)2 ≤ 4c′ − 4cc′.
Similarly, we derive  1− c− (1− c− c′)2 ≤ 4c′ − 4cc′,

c′ ≤ 1− c− (1− c− c′)2 ≤ 2c′,
0 < c′ ≤ c ≤ 1− c′.

4 Finding non-trivial partial geodesics

In this section we count the number of elements in Xn(I) for a given segment set
I. This gives an upper bound for the number of elements in X̄n(I), by which we
will be able to estimate the asymptotic behaviour of the probability of having a
geodesic point of id and ξ(n), far from both of them, as n tends to∞. In fact we
can prove that this probability converges to 0. This partly proves a conjecture
stated by Haghighi and Sankoff in [5], for the case of two random permutations.

Recall the definition of the set of intrinsic points, end points and isolated
points of a given segment set I from Section 2, and as before denote them by
Int(I), End(I) and Iso(I), respectively.

Lemma 4. Let x be a permutation in Sn, and let I ∈ I(n) be a segment set.
There exist a permutation π ∈ Sn containing I such that Aπ \ I ⊂ Ax if and
only if there exist q, r ∈ [n] and a segment set J contained in x satisfying one
of the following conditions:

(i) {q, r} = End(I)∩Iso(J), ‖J‖ = ‖I‖−1, Int(J) = Iso(I), Iso(J)\{q, r} =
Int(I) and End(J) = End(I) \ {q, r};

(ii) {r} = End(J) ∩ Iso(I) and {q} = End(I) ∩ Iso(J), ‖J‖ = ‖I‖, Int(J) =
Iso(I) \ {r}, Iso(J) \ {q} = Int(I) and End(J) \ {r} = End(I) \ {q}; or

(iii) {q, r} = End(J)∩Iso(I), ‖J‖ = ‖I‖+1, Int(J) = Iso(I)\{q, r}, Iso(J) =
Int(I) and End(J) \ {q, r} = End(I).

In any of these three cases, q will be π1 and r will be πn, or the opposite.

Proof. To prove necessity, let π be a permutation in Sn containing I such that
Aπ \ I ⊂ Ax, and define J := Aπ \ I. Then I and J are disjoint and they
complete each other in an alternating way, that is for any pair of neighbour
segments s1, s2∈̂I with respect to π, there exists exactly one segment of J that
connects s1 and s2, and similarly, for any pair of neighbour segments s′1, s

′
2∈̂J

with respect to π, there exists exactly one segment of I that connects s′1 and s′2.
Therefore, we have |‖I‖ − ‖J‖| ≤ 1, and also, all intrinsic points of I must be
isolated points of J , Int(I) ⊆ Iso(J), as well as all intrinsic points of J must be
isolated points of I, Int(J) ⊆ Iso(I). Furthermore, all end points of I, except
at most two of them, must be end points of J , and similarly, all end points of J ,
except at most two of them must be end points of I. Indeed, when we remove
the intersection of end points of I and end points of J from the end points of
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the union, two points remain. In other words, there exists two points q, r ∈ [n]
such that

End(I ∪ J) \ (End(I) ∩ End(J)) = {q, r}.

These two points can either be both end points of I, or both end points of J ,
or one of them an end point of I and the other an end point of J according to
the following cases.

(i) If ‖J‖ = ‖I‖ − 1, then {π1, π2} and {πn−1, πn} are adjacencies of id, and
so q := π1 and r := πn are end points of I while both are isolated points
of J . Therefore, we have Int(J) = Iso(I), Iso(J) \ {q, r} = Int(I) and
End(J) = End(I) \ {q, r}.

(ii) If ‖I‖ = ‖J‖, then either {π1, π2} is an adjacency of id and {πn−1, πn} is an
adjacency of x or vice versa, {π1, π2} is an adjacency of x and {πn−1, πn}
is an adjacency of id. Without loss of generality suppose {π1, π2} is an
adjacency of id and {πn−1, πn} is an adjacency of x. Then q := π1 is
an end point of I and also an isolated point of J , while r := πn is an
end point of J and also an isolated point of id with respect to I, and we
have Int(J) = Iso(I) \ {r}, Iso(J) \ {q} = Int(I) and End(J) \ {r} =
End(I) \ {q}.

(iii) Finally, if ‖J‖ = ‖I‖+ 1, then {π1, π2} and {πn−1, πn} are adjacencies of
x. Therefore, q := π1 and r := πn are end points of J and also isolated
points of I. Furthermore, Int(J) = Iso(I) \ {q, r}, Iso(J) = Int(I) and
End(J) \ {q, r} = End(I).

To prove sufficiency, let q, r ∈ [n] and J be a segment set contained in x satisfying
condition (i) in the statement of the lemma (the proof is similar, for q, r, and J
satisfying conditions (ii) and (iii)). Then

Int(I) ∪ End(I) ∪ Int(J) = Int(I) ∪ End(I) ∪ Iso(I) = [n],

and
Int(I) ∩ Int(J) = Int(I) ∩ Iso(J) = ∅.

In fact, this shows that I and J complete each other in an alternating way, and
I ∪ J is a unique segment with extremities q and r, i.e. End(I ∪ J) = {q, r},
and with intrinsic points Int(I ∪ J) = [n] \ {q, r}. In other words, there exists
a permutation π such that Aπ = I ∪ J . As I and J are disjoint, one can write
J = Aπ \ I ⊂ Ax. This finishes the proof.

Let I be a segment set in I(n), and let x ∈ Xn(I). From Lemma 4, x contains
a segment set J satisfying one of the three conditions indicated in the statement
of Lemma 4.

Remark 1. Let I be a segment set of id and π a permutation containing I.
In order to construct a permutation x such that Īπ = Aπ \ I ⊂ Ax, we should

25



take different rearrangements of segments of Iπ (considering two directions)
and intrinsic points of I. Each such rearrangement gives us a permutation
x ∈ Xn(I).

In Theorem 5, we give an explicit formula for the number of permutations
in Xn(I) as a function of the number of adjacencies and segments in I. To this
end, we need the following lemma.

Lemma 5. Given a segment set I with m adjacencies and k segments, that is

I ∈ I(n)
m,k, the number of permutations in Sn containing I is equal to 2k(n−m)!.

Proof. As the segment set I has m adjacencies and k segments, each permuta-
tion containing I has n −m − k isolated points with respect to I. Therefore,
noting that segments have two directions, we have 2k(k+ (n−m− k))! permu-
tations containing I.

Theorem 5. Given a segment set I with m adjacencies and k segments, that

is I ∈ I(n)
m,k, we have:

|Xn(I)| = 2k(m+ 1)!(n−m− 2)!

k!

×
(
k2(k − 1) + 2k(n−m− k) +

(n−m− k)(n−m− k − 1)

k + 1

)
(4)

Proof. Note that since the segment set I has m adjacencies and ‖I‖ = k, then
|Int(I)| = m − k, |Iso(I)| = n − m − k and |End(I)| = 2k. By definition,
x ∈ Xn(I) if there exist a segment set J that satisfies one of the three conditions
in Lemma 4. We divide the proof into three cases. We shall count the number
of ways we can construct J for each one of the three cases, and thus, we use
Lemma 5 to compute the number of permutations x ∈ Xn(I) containing J in
each case.

If ‖J‖ = k − 1, then to have a permutation π such that Aπ is a sequence
of alternating segments from I and J , the number of ways that we can choose
pairs of end points to construct segments of J is equal to the number of ways
we can rearrange the segments of I, noting that each segment can be placed
in two different directions and End(J) ⊂ End(I). Hence, we have 2kk! ways
to choose pairs of end points for J . On the other hand, when the end points
of segments of J are fixed, as Int(J) = Iso(I), the number of ways that one
can distribute (with order) n−m− k intrinsic points in k − 1 segments of J is
((n−m−k)+(k−2))!

(k−2)! = (n−m−2)!
(k−2)! . Ignoring the direction and order of segments in

this calculation, we have

2kk!
(n−m− 2)!

(k − 2)!(k − 1)!2k−1
= 2k

(n−m− 2)!

(k − 2)!

ways to construct segment set J . Remember that each of these possible segment
sets J has exactly k − 1 segments and n − m − 1 adjacencies and therefore,
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applying Lemma 5, there exist

2k
(n−m− 2)!

(k − 2)!
2k−1(n− (n−m− 1))! =

2kk(n−m− 2)!(m+ 1)!

(k − 2)!

permutations x ∈ Xn(I) containing J that satisfies the case (i) of Lemma 4.
Similarly, if ‖J‖ = k, the number of ways that we can choose pairs of end

points for segments of J is equal to the number of ways we can arrange the
segments of I, noting that each segment can be in two directions and in this
case one of the end points of J must be chosen from Iso(I) since End(J)\{r} =
End(I)\{q} where r is an end point of J and an isolated point in id with respect
to I, and q is an end point of I and an isolated point in x with respect to J .
Therefore, we have 2(n−m−k)2kk! ways to choose pairs of end points in order
to construct J . Whereas, |Int(J)| = |Iso(I)| − 1, we have

2(n−m− k)2kk!
((n−m− k − 1) + k − 1)!

(k − 1)!2kk!
=

2(n−m− k)(n−m− 2)!

(k − 1)!

ways to construct segment set J . Thus there exist

2k(m+ 1)!
2(n−m− k)(n−m− 2)!

(k − 1)!
=

2k+1(n−m− k)(m+ 1)!(n−m− 2)!

(k − 1)!

permutations x ∈ Xn(I) containing J that satisfies case (ii) of Lemma 4.
Lastly, if ‖J‖ = k + 1 then |Int(J)| = n−m− k − 2, |Iso(J)| = m− k and

End(J) \ {q, r} = End(I) where q and r are end points of J and isolated points
of I. Therefore, similarly, there exist

2kk!(n−m− k)(n−m− k − 1)
(n−m− 2)!

k!(k + 1)!2k+1
2k+1(m+ 1)! =

2k(n−m− k)(n−m− k − 1)(n−m− 2)!(m+ 1)!

(k + 1)!
(5)

permutations x ∈ Xn(I) containing J that satisfies case (iii) of Lemma 4.

Remark 2 (Random segment set). Applying Proposition 2, the probability of

existence of a permutation π ∈ [id, ξ(n)] containing random segment set I
(n)
m

such that Aπ \ I(n)
m ⊂ Aξ(n) , is bounded by

P(ξ(n) ∈ Xn(I(n)
m )) =

m∑
k=1

(
m−1
k−1

)(
n−m
k

)
2k(m+ 1)!(n−m− 2)!(
n−1
m

)
k!n!

×
(
k2(k − 1) + 2k(n−m− k) +

(n−m− k)(n−m− k − 1)

k + 1

)
.
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For 0 < ε < 1/2, let

Λεn :=
⋃

m≤n−1

⋃
k≥εn

I(n)
m,k.

Note that the condition k ≥ l, for convenient l ∈ [n], implies that l ≤ m ≤ n− l,
since k ≤ m and also in order that a segment set I contained in a permutation
x has at least l segments, at least l− 1 adjacencies of x should not appear in I.
The following theorem is the consequence of Theorem 5.

Theorem 6. Let 0 < ε < 1/2 and let (In)n∈N be a sequence of segment sets
such that In ∈ I(n) and εn ≤ |In| ≤ (1− ε)n. Then

|Xn(In)|
n!

→ 0,

as n→∞. Furthermore,

P(ξ(n) ∈
⋃
I∈Λε

n

Xn(I))→ 0,

as n→∞.

Proof. By assumption, for every n ∈ N, there exists cn such that ε ≤ cn ≤ 1−ε
and |In| = ncn + o(n). Then, by Lemma 5 and Stirling’s formula, there exists a
constant c0 such that

lim
n→∞

|Xn(In)|
n!

≤ c0 lim
n→∞

( cnn
e )cnn+o(n)(

(1−cn)n
e )(1−cn)n−o(n)

( n
e )n (n

7
2 + o(n

7
2 ))

≤ c0 lim
n→∞

(εε(1− ε)1−ε)n+o(n)(n
7
2 + o(n

7
2 )) = 0,

where the last inequality holds as the maximum of the function f(x) = xx(1−
x)1−x in the domain [ε, 1− ε] is εε(1− ε)1−ε.

For the second part, recall that if I ∈ Λεn, then ‖I‖ ≥ εn, and hence,
εn ≤ |I| ≤ (1− ε)n. For any I ∈ Λεn, from Theorem 5, we have

|Xn(I)|
n!

≤ 2b(1−ε)nc+1bεnc!(b(1− ε)nc+ 1)!

bεnc!n!
(n3 + o(n3)).

Therefore, |Λεn| ≤ 2n−1 and Stirling’s formula imply

lim
n→∞

P(ξ(n) ∈
⋃

I∈Λε
n

Xn(I))

≤ lim
n→∞

2n(2e)(1−ε)n+o(n)(εε(1−ε)1−ε)n

(εn)εn (n3 + o(n3)) = 0.
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Now we prove the main theorem of this section, namely, we prove, in part,
a conjecture stated in Haghighi et. al. [5]. For ε > 0, set

Dεn := {x ∈ Sn : ∃π ∈ [id, x] s.t. d(n)(π, id), d(n)(π, x) ≥ εn}.

Also, for a ∈ R, define

∆a
n := {x ∈ Sn : |Aid,x| ≤ a}.

Theorem 7. For any ε > 0,

P(ξ(n) ∈ Dεn)→ 0,

as n→ 0.

Proof. Let (an)n∈N be an arbitrary sequence of real numbers diverging to ∞
such that an/n→ 0, as n→∞. Let

Υε
n :=

⋃
m∈[ ε2n,(1−

ε
2 )n]

I(n)
m

Then
0 ≤ lim

n→∞
P(ξ(n) ∈ Dεn) = lim

n→∞
P(ξ(n) ∈ Dεn ∩∆an

n ) ≤
lim
n→∞

P(ξ(n) ∈ ∆an
n ∩

⋃
I∈Υε

n

Xn(I)) ≤

lim
n→∞

P(ξ(n) ∈
⋃

I∈Υε
n

Xn(I)) = 0,

where the last convergence holds from Theorem 5, Theorem 6, and Stirling’s
formula.
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