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Abstract

Consider k genomes X = {⇠1, · · · , ⇠k} that are chosen uniformly and indepen-
dently at random from the space of all genomes of a specified size with identical
gene content. Let M be the set of their breakpoint medians. The mathemat-
ical study of the size and distribution of M is rather complex. In this paper,
we initiate the study of the distribution of M, and introduce the notion of
“median inverse” to estimate the chance of a given genome being an “approxi-
mate” breakpoint median of X . As a result, we investigate the expected number
of approximate breakpoint medians of X , which also provides an upper bound
for the expected number of medians E|M|.

Keywords: Random genomes, breakpoint distance, median inverse.

1 Introduction

A simple but e↵ective way to measure gene-order dissimilarity between two genomes
is to count the number of their breakpoints. A breakpoint of a genome G with respect
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to another genome G0 is a pair of genes adjacent in G but not in G
0. Their breakpoint

distance is then defined by d(G,G
0) := |AG�AG0 |/2, where AG and AG0 represent

the sets of gene adjacencies of G and G
0, and � denotes the symmetric di↵erence

operation for sets. We also denote by AG,G0 the set of common gene adjacencies of
G and G

0. Although the number of breakpoints of G with respect to G
0 may be

di↵erent from that of G0 with respect to G, they are equal if both genomes have the
same gene contents, where in this case, the breakpoint distance formula reduces to
d(G,G

0) = |AG|� |AG,G0 |.
Introduced in Sanko↵ and Blanchette (1997), the breakpoint median of k �

3 genomes G1, · · · , Gk, is a genome that minimizes the total distance functionPk
i=1 d( . , Gi). Often employed to reconstruct the gene-order evolutionary history in

the small phylogeny problem, the medians are proved to be rather useful for inferring
the ancestral genomes under certain conditions (see Jamshidpey and Sanko↵ (2013);
Jamshidpey (2016); Jamshidpey and Sanko↵ (2017) for the mathematical study).
The medians are also aimed to capture the genetic similarities shared among k � 3
genomes. However despite their importance, finding and constructing medians can be
rather challenging (da Silva et al, 2024; Larlee et al, 2014). In fact the median problem
is NP-hard for various genomic distances including the breakpoint distance (Bryant,
1998; Caprara, 2003; Tannier et al, 2009; Fertin et al, 2009). Moreover, multiple median
genomes may exist for a given set of genomes, some of which may be distant from
each other, and some may be far from the true ancestor, rendering them unsuitable for
accurate inference. Therefore, studying the size and distribution of the set of medians
of k � 3 random genomes is important for advancing our understanding of genomic
evolution.

To be more precise, labeling genes by numbers, a linear unichromosomal genome of
size n can be represented by a permutation on [n] := {1, · · · , n}. Letting Sn denote the
set of all permutations on [n], or equivalently the set of all genomes with identical set of
genes 1, · · · , n, it is of particular interest to find the probability (A ⇢ M) for any set

A ⇢ Sn, where M is the set of medians of some genomes (permutations) ⇠(n)1 , · · · , ⇠(n)k
chosen uniformly and independently at random from Sn. Solving this problem however
is di�cult and the probability depends on various parameters including the pairwise
distances of genomes in A. In this paper, we address the problem for the simplest
case of singletons A = {x}. The symmetry of the permutation group indicates that
this probability is the same for all choices of x. However, it is not very simple to find
the exact value of (x 2 M) which depends on k and n. Computing this probability,
one can easily derive |M|, the expected number of breakpoint medians of random
permutations ⇠1, · · · , ⇠k.

To establish our results, we introduce the notion of the “median inverse” of ⇡ 2 Sn

as the set of all k-subsets {y1, · · · , yk} of Sn for which ⇡ is a median. We define the
“approximate breakpoint medians” of k genomes to be a genome whose adjacencies,
except a few of them, are selected from the union of adjacencies of the k genomes.
For a given genome ⇡, we construct and count all k-subsets {y1, · · · , yk} of genomes
in Sn for which ⇡ is an approximate median. This gives an asymptotic upper bound
for the size of the median inverse set. For any given genome, this also determines the
probability of being an approximate median of a set of random genomes which itself
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is an upper bound for the probability of being their exact median. Finally, we derive
an explicit expression for the expected number of the approximate medians of a set
of random genomes. For any given k 2 and ⇡ 2 Sn, our approach provides an
algorithm to count the number of all possible k-subsets {y1, · · · , yk} ⇢ Sn for which
⇡ is a median.

The paper is organized as follows. Section 2 introduces some important concepts
such as median inverse and segment sets. In Section 3, we provide a brief description
of the main results. Section 4 discusses the main results on the number of approx-
imate medians of a set of random genomes. We first recall some results about the
behaviour of the median of k genomes with (almost) maximum pairwise breakpoint
distances. In particular, for any small k 2 and ⇡ 2 Sn, we establish a theory for
counting the number of k-subsets {y1, · · · , yk} ⇢ Sn for which A⇡ ⇢ [k

i=1Ayi . This
motivates us to build a theory in the general case in Theorems 1-4. More precisely,
for any set of permutations (genomes) {x1, · · · , xk} ⇢ Sn and any median of this set,
namely x, Theorem 1 provides an upper bound for |Ax \[k

i=1Axi |, the total number of
adjacencies of x which are not adjacencies of x1, · · · , xk. Using this, Theorem 2 gives
the asymptotic behaviour of the corresponding upper bound for the total number of
adjacencies of any median of random genomes ⇠1, · · · , ⇠k which are not taken from the
adjacencies of ⇠1, · · · , ⇠k. Finally, Theorems 3 and 4 provide an explicit expression of
the probability for any given permutation to be an approximate median of ⇠1, · · · , ⇠k.
This in addition computes the expected number of approximate breakpoint medians
of ⇠1, · · · , ⇠k.

2 Definitions

We assume that there are no duplicated genes. This means linear unichromosomal
genomes with n genes or markers labelled by 1, · · · , n are represented by permutations
on [n] := {1, · · · , n}. Let Sn denote the group of all permutations on [n], endowed
with function composition as the multiplication operation, and denote by id := id

(n)

the identity permutation 1 2 3 ... n. For a permutation ⇡ := ⇡1 ... ⇡n, any unordered
pair {⇡i,⇡i+1} = {⇡i+1,⇡i}, for i = 1, ..., n � 1, is called a (gene) adjacency of ⇡.
The set of all adjacencies of ⇡ is denoted by A⇡. Also, Ax1,...,xk denotes the set of all
common adjacencies of x1, ..., xk 2 Sn. The breakpoint distance (bp distance) between
x, y 2 Sn is defined by

d(x, y) = d
(n)(x, y) := n� 1� |Ax,y| = |Ax�Ay|/2.

Note that the bp distance is a left-invariant pseudometric on Sn, that is, for any
x, y, z 2 Sn, d(x, y) = d(zx, zy).

Define the total breakpoint distance of x 2 Sn to a set of permutations A ⇢ Sn by
dT (x,A) :=

P
y2A d(x, y). A median of A ✓ Sn is a permutation in Sn (not necessarily

unique) whose total distance to A takes the minimum value, i.e. it is a permutation
x 2 Sn such that dT (x,A) = miny2Sn dT (y,A). Furthermore, the median value of A
is the minimum value of the total distance function to A. We denote by Mn(A) the
set of all breakpoint medians of A ⇢ Sn. Note that that Mn(A) is always non-empty,
but not necessarily a singleton.

3



= 10     1       2      3      9       4        7       8      5       6 = 8       5       6       1      10      2       3      9       4       7!""
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-

s1 s2
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s

I = { s1, s2 } = { {2,3},{3,9},{9,4},{4,7}, {8,5},{5,6} }

Fig. 1 The segment set I is contained in permutations ⇡ and ⇡̃. As ⇡ 6= ⇡̃, the complement segment
sets of I with respect to ⇡ and ⇡̃ are di↵erent, i.e., Ī⇡ 6= Ī⇡̃ . The segments s1 and s2 are strongly
disjoint, s1 and u1 are disjoint, and s1 and s intersect. The segments s and u1 are consistent and
their union is {{10, 1}{1, 2}{2, 3}}, while the segments s and v1 are inconsistent.

It is not hard to see that any median of x, y 2 Sn is a permutation z 2 Sn for
which d(x, y) = d(x, z)+d(z, y) and vice versa. Any such permutation z 2 Sn is called
a geodesic point of x, y (Jamshidpey et al, 2014). The set of all geodesic points of
x, y 2 Sn is denoted by [x, y].

A segment of Sn is a set of consecutive (gene) adjacencies of a permutation
(genome) in Sn. More precisely, a segment of length k 2 [n� 1] is a set of adjacencies
{{n0, n1}, {n1, n2}, ..., {nk�2, nk�1}, {nk�1, nk}}, for k + 1 distinct numbers (genes)
n0, n1, ..., nk 2 [n]. In particular, the empty set ; is regarded as a segment of length 0.
We denote by |s| the length of a segment s. We say two segments s and s

0 are strongly
disjoint if there is no common genes (numbers) shared between them. They are dis-
joint if they do not share any common adjacencies. Otherwise, we say they intersect
each other.

A segment set I of a permutation ⇡ 2 Sn is a subset of the gene adjacencies of
⇡, i.e. I ⇢ A⇡. Alternatively, we say ⇡ contains I. Note that a segment set can be
contained in more than one permutation. Denote by I(n) the set of all segment sets of
Sn. By a segment of a segment set I we mean a maximal segment contained in I. Also
we denote by kIk := k, the number of segments of I. We emphasize that “| . |” is used
for both cardinality of a set and absolute value of a real number. So for a segment
set I with segments s1, · · · , skIk, |I| =

P
kIk
i=1 |si| counts the number of adjacencies

of I. Two segment sets I and J (in particular two segments s and s
0, respectively)

are said to be consistent, if their union is contained in A⇡, for some permutation
⇡. When we speak of union of two or more segment sets (respectively, two or more
segments) we always assume that they are pairwise consistent. We say segment sets
I1, ..., Ik completes each other if there exists a permutation ⇡ such that [k

i=1Ii = A⇡.
In particular, the complement of a segment set I with respect to ⇡ 2 Sn is the unique
segment set Ī⇡ := A⇡ \ I. An example is given in Figure 1.

3 Brief description of results

In this paper, we introduce the “Median Inverse Problem”, to study the expected
number of medians for a set of random permutations. We find an upper bound for
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the probability that a permutation ⇡ is a median of k genomes ⇠1, · · · , ⇠k, chosen
independently and uniformly at random from Sn. Given a set A ⇢ Sn, we look for all
k-tuples (x1, ..., xk) 2 S

k
n with A ⇢ Mn(x1, · · · , xk), that is, the k-median inverse of

A is defined by

M�1
n,k(A) := {(x1, ..., xk) 2 S

k
n : A ⇢ Mn({x1, ..., xk})}.

We find an upper bound for the cardinality of M�1
n,k(A) when A is a singleton. We

approximate the asymptotic probability that k independent random permutations
in Sn have a given median ⇡ 2 Sn, and find an upper bound for that. In general,
for k given permutations X = {x1, ..., xk}, there may exist a median ⇡ such that
A⇡ \ [k

i=1Axi 6= ;. We find an upper bound, denoted by On(X), for max{|A⇡ \
[k
i=1Axi | : ⇡ 2 Mn(X)}, which is the maximum number of adjacencies a median ⇡

may have, that do not belong to any permutation x1, · · · , xk. For random permutations

⇠
(n)
1 , · · · , ⇠(n)k chosen independently from Sn and for any sequence of real numbers

(an)n2 tending to 1, we show that |On({⇠(n)1 , ..., ⇠
(n)
k })|/an ! 0, in probability, as n

goes to 1. For c � 0, we define a c-approximate median of X to be a permutation ⇡

for which |A⇡ \
S

x2X Ax|  c. Motivated by this, the c-approximate median set and
c-approximate median inverse of ⇡ 2 Sn are defined as

Ln,c(X) := {⇡ 2 Sn : |A⇡ \
[

x2X

Ax|  c}, (1)

and

L �1
n,k,c(⇡) = {(y1, ..., yk) 2 S

k
n : |A⇡ \

k[

i=1

Ayi |  c}. (2)

We show that with high probability, as n ! 1, we have

Mn(⇠
(n)
1 , · · · , ⇠(n)k ) ⇢ Ln,an(⇠

(n)
1 , · · · , ⇠(n)k ),

implying |M�1
n,k(⇡

(n))|  |L �1
n,k,an

(⇡(n))| for any arbitrary sequence of (⇡(n))n2 ,

⇡
(n) 2 Sn. Finally, we construct the elements of L �1

n,k,c(⇡
(n)), and give an exact

expression for its cardinality (see Theorems 3 and 4). Letting O⇤
n = O(⇠1, · · · , ⇠k), the

inequality
|M(⇠1, · · · , ⇠k)|  |L �1

n,k,O⇤
n
(⇡(n))|/(n!)k�1

provides an upper bound for the expected number of medians of ⇠1, · · · , ⇠k. Among
their various advantages, the methods discussed in this paper provide an algorithmic
perspective on both constructing and counting approximate medians of a set of random
genomes.

4 Results

For a permutation x 2 Sn, it is clear that M�1
n,1(x) = {x, y}, where y 6= x is the

unique permutation for which d(x, y) = 0. For instance, M�1
n,1(id) = {id, y}, where y =
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n n� 1 · · · 2 1. Also, M�1
n,2(x) = {(x1, x2) 2 S

2
n : x 2 [x1, x2]}. It is well known that

the expected number of common adjacencies of two random permutations is O(1); see
Proposition 4. This means that, with high probability, the random permutations are
at approximately maximum distance from each other. Hence, to study the median of k
random permutations, we need to review some results for the median of k permutations
with pairwise maximum distance n � 1 from each other. In particular recall that a
permutation ⇡ is the median of k permutations with pairwise maximum distance n�1
from each other, if and only if every adjacency of ⇡ is an adjacency of at least one of
those k permutations. In other words we have

Proposition 1 (Jamshidpey et al (2014)). Let X ⇢ Sn such that d(x, y) = n� 1 for
any x, y 2 X. Then ⇡ is a median of X if and only if A⇡ ⇢

S
x2X

Ax.

This is not true in general when the distances of input genomes are not the maxi-
mum value n�1. For example, if n = 9, x = 2 7 5 6 8 3 9 4 1 and ⇡ = 6 8 9 3 4 1 2 7 5,
then every adjacency of ⇡ is either an adjacency of id = id

(n) or an adjacency of x, but
d
(9)(id, x) = 7 < d

(9)(id,⇡)+ d
(9)(⇡, x) = 8. In fact, this happens because all common

adjacencies of id and x must be adjacencies of ⇡ in order to have ⇡ 2 [id, x] as stated
in the next proposition.
Proposition 2 (Jamshidpey et al (2014)). Let x, y 2 Sn. Then z 2 [x, y] if and only
if Ax,y ⇢ Az ⇢ Ax [Ay.

Recall from (1) and (2) that, for any X ⇢ Sn

Ln,0(X) := {⇡ 2 Sn : A⇡ ⇢
[

x2X

Ax},

and

L �1
n,k,0(⇡) = {(x1, ..., xk) 2 S

k
n : ⇡ 2 Ln,0({x1, ..., xk})} =

{(x1, ..., xk) 2 S
k
n : A⇡ ⇢

[

x2X

Ax}. (3)

In fact, Proposition 1 implies that for X ⇢ Sn with d(x, y) = n� 1, for x, y 2 X, we
have Mn(X) = Ln,0(X). Letting

Vn,k = {(x1, ..., xk) 2 S
k
n : d(xi, xj) = n� 1, for i 6= j},

we get, for any ⇡ 2 Sn, L �1
n,k,0(⇡) \ Vn,k = M�1

n,k(⇡) \ Vn,k. In other words, when we

restrict ourselves to Vn,k, elements of M�1
n,k(⇡) are identical to those of L �1

n,k,0(⇡). We

continue this paper with studying |L �1
n,k,0(⇡)|. To this end, we try to find an ordered

k-tuple (J1, ..., Jk) where every Ji, for i = 1, ..., k, is a segment set of Sn such thatSk
i=1 Ji = A⇡, and then find all possible k-tuples (x1, ..., xk) 2 S

k
n such that, for

i = 1, ..., k, permutation xi contains exactly segment set Ji from ⇡, not anything more.
We will see that this gives us a way to count |L �1

n,k,0(⇡)| exactly. More precisely, for a
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segment set I in a permutation ⇡, we define H(n)
⇡ (I) to be the set of all permutations

having exactly segment set I from ⇡, that is H(n)
⇡ (I) = {x 2 Sn : A⇡,x = I}. Observe

that, for permutations x, y 2 Sn, x 2 H(n)
y (I) if and only if y 2 H(n)

x (I). Also, one
can see that, for two non-identical segment sets of ⇡ 2 Sn, namely I 6= I

0, we have

H(n)
⇡ (I) \H(n)

⇡ (I 0) = ;, since if x 2 H(n)
⇡ (I) and y 2 H(n)

⇡ (I 0), then A⇡,x = I 6= I
0 =

A⇡,y.
Let

P(n)
k,0 (⇡) = {(J1, ..., Jk) 2 (I(n))k :

k[

i=1

Ji = A⇡}. (4)

Note that the Ji in the definition of P(n)
k,0 (⇡) may intersect each other. If J =

(J1, ..., Jk),J 0 = (J 0
1, ..., J

0

k) 2 P(n)
k,0 (⇡), such that J 6= J 0, then

(H(n)
⇡ (J1)⇥ ...⇥H(n)

⇡ (Jk)) \ (H(n)
⇡ (J 0

1)⇥ ...⇥H(n))
⇡ (J 0

k)) = ;.

Now, if (x1, ..., xk) 2 L �1
n,k,0(⇡), then A⇡ ⇢ [k

i=1Axi . Therefore, there exists

(J1, ..., Jk) 2 P(n)
k,0 (⇡) such that, for any i = 1, ..., k, A⇡,xi = Ji implying that

(x1, ..., xk) 2 H(n)
⇡ (J1)⇥ ...⇥H(n)

⇡ (Jk). On the other hand, if

(x1, ..., xk) 2
[

(J̃1,...,J̃k)2P(n)
k,0 (⇡)

H(n)
⇡ (J̃1)⇥ ...⇥H(n)

⇡ (J̃k),

then there exists (J1, ..., Jk) 2 P(n)
k,0 (⇡) such that xi 2 H(n)

⇡ (Ji), for i = 1, ..., k, which
means by itself A⇡,xi = Ji. Thus

A⇡ =
k[

i=1

Ji =
k[

i=1

A⇡,xi ⇢
k[

i=1

Axi .

Hence, (x1, ..., xk) 2 L �1
n,k,0(⇡). We have proved the following proposition.

Proposition 3. Let n, k be natural numbers, and ⇡ be a permutation in Sn. Then

L �1
n,k,0(⇡) =

[

(J̃1,...,J̃k)2P(n)
k,0 (⇡)

H(n)
⇡ (J̃1)⇥ ...⇥H(n)

⇡ (J̃k),

and

|L �1
n,k,0(⇡)| =

X

(J̃1,...,J̃k)2P(n)
k,0 (⇡)

kY

i=1

|H(n)
⇡ (J̃i)|.

So, knowing the number of elements of H(n)
⇡ (J̃i) has an important role in counting

the number of elements of L �1
n,k,0(⇡).
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What can we say when the permutations are chosen uniformly and independently
at random from Sn? One can see that the situation in this case is similar to that in the
case of permutations with pairwise maximum distance from each other. The following
classic result can shed light on this.

Proposition 4. Let ⇠ = ⇠
(n) be a permutation chosen uniformly at random from Sn,

and let (an)n2 be a sequence of real numbers tending to 1. Then

i) [d(id, ⇠)] = n� 1� 2(n�1)
n , n 2 .

ii) var(d(id, ⇠)) = (2� 2
n )(�1 + 2

n ) +
4(n�2)2

n(n�1) , n 2 .

iii) For any " > 0, (n� 1� d(id, ⇠) � "an) ! 0, as n ! 1.

Proof. For simplicity, we drop the superscript of id(n) in the following computations.

For i = 1, ..., n � 1, let �i = 1 if the i-th adjacency of ⇠(n), namely {⇠(n)i , ⇠
(n)
i+1} is an

adjacency of id, and let �i = 0, otherwise. For i = 1, ..., n� 1, we have

[�i] =
2(n� 1)

n(n� 1)
=

2

n
.

We can write

|Aid,⇠(n) | =
n�1X

i=1

[�i] =
2(n� 1)

n
.

Also,

var(|Aid,⇠(n) |) =
n�1X

i=1

[�2
i ] + 2

X

i<j

[�i�j ]� [|Aid,⇠(n) |]2

= [|Aid,⇠(n) |](1� [|Aid,⇠(n) |]) + 2
X

j�i>1

[�i�j ] + 2
X

j�i=1

[�i�j ].

But, for j� i > 1, we consider two cases. First, the i-th adjacency of ⇠(n) can be one of
the n�3 adjacencies of id, namely {u, u+1} for u = 2, ..., n�2, each with two di↵erent

directions, i.e. either ⇠(n)i = u and ⇠
(n)
i+1 = u+ 1, or ⇠(n)i+1 = u and ⇠

(n)
i = u+ 1. In this

case there are n� 4 adjacencies of id (exclude {u, u+1} and both of its neighbouring

adjacencies) that j-th adjacency of ⇠(n)i can be identical to, each with two directions.
The second case, is when the i-th adjacency of ⇠(n) is either {1, 2} or {n� 1, n}, each
with two possible directions, and in this case there are n�3 adjacencies of id (exclude
the one chosen for i-th adjacency of ⇠(n) and its unique neighbouring adjacency in id),
that can be picked for the j-th adjacency of ⇠(n), again each with two directions. In
summary, for j � i > 1,
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[�i�j ] = (�i = 1,�j = 1)

=
(2(n� 3)⇥ 2(n� 4)) + ((2⇥ 2)⇥ (2(n� 3))

n(n� 1)(n� 2)(n� 3)
=

4

n(n� 1)
. (5)

But the number of ways one can choose i, j such that j � i > 1 is 1 + ...+ (n� 3) =
(n� 2)(n� 3)/2. So

2
X

j�i>1

[�i�j ] =
4(n� 2)(n� 3)

n(n� 1)
.

Similarly, for j � i = 1, the i-th and i + 1-st adjacencies of ⇠(n) should be identical
to two consecutive adjacencies of id. Considering the direction, this gives 2(n � 2)
possible ways in which �i = 1 and �i+1 = 1. This implies that, for j � i = 1,

[�i�j ] = (�i = 1,�j = 1) =
2(n� 2)

n(n� 1)(n� 2)
=

2

n(n� 1)

As the number of ways one can choose i, j such that j � i = 1 is n� 2, we can write

2
X

j�i=1

[�i�j ] =
4(n� 2)

n(n� 1)
.

Putting all this together, we get

var(|Aid,⇠(n) |) =
2(n� 1)

n
(1� 2(n� 1)

n
) +

4(n� 2)(n� 3)

n(n� 1)
+

4(n� 2)

n(n� 1)
, n 2

which concludes the second part of the proposition. Finally, letting n ! 1, we
have [|Aid,⇠(n) |] ! 2 and var(|Aid,⇠(n) |) ! 2. Therefore, for any arbitrary sequence
(an)n2 , satisfying the conditions mentioned in the statement of the proposition,
Chebyshev’s inequality implies convergence in probability of |Aid,⇠(n) |/an to 0, as
n ! 1, and therefore, (iii) is proved.

As we mentioned before, when the pairwise distances of permutations in X ⇢ Sn

take the maximum value n� 1, a permutation ⇡ is a median of X if and only if each
of its adjacencies is an adjacency of exactly one of the permutations in X. This is not
true in general. In fact, for a general X ⇢ Sn, a median need not to take all of its
adjacencies from [x2XAx. Can we find an upper bound for the number of adjacencies
of any median of X which are not from [x2XAx? In other words, can we find a good
uniform upper bound for |A⇡ \ [x2XAx| , for any median ⇡ of X? The next theorem
answers this question. Before stating the theorem we introduce some notations as
follows.

Denote by P(S) the set of all subsets of a set S. Let X={x1, ..., xk}⇢Sn and let
BX
X = BX

x1,...,xk
:= Ax1,...,xk . Then, for any j = 1...k, let

BX
x1,...,xj�1,xj+1,...xk

:= Ax1,...,xj�1,xj+1,...xk \ BX
x1,...,xk

9



Continuing this, for any U = {xi1 , ..., xir} ⇢ X, we set

BX
U = BX

xi1 ,...,xir
:= AU \

[

U$V

BX
V .

Also, for a permutation ⇡ and r  k, let "̄
X
i1,...,ir (⇡) := |A⇡ \ BX

xi1 ,...xir
|. For x 2 Sn

and a subset X ⇢ Sn, recall that the bp total distance of x to X is given by

dT (x,X) = d
(n)
T (x,X) :=

X

y2X

d(x, y).

Theorem 1. Let X = {x1, ..., xk} ⇢ Sn, and let x 2 Mn(X). We assume the labels
of elements of X are such that dT (xk, X) = min

i=1,...,k
dT (xi, X). Then

|Ax \
k[

i=1

Axi |


kX

r=2

(r � 1){
X

1i1<...<irk

"̄
X
i1,...,ir (x)�

X

1i1<...<ir�1<k

|BX
xi1 ,...,xir�1 ,k

|}


k�1X

r=2

(r � 1)
X

1i1<...<ir<k

|BX
xi1 ,...,xir

|. (6)

In particular, for k = 3, for any x 2 Mn(X), |Ax \
3S

i=1
Axi |  |BX

x1,x2
|.

Proof. To ease the notation, when there is no risk of ambiguity, we let Bi1,··· ,i` =
Bxi1 ,...,xi`

. Let ⌘ = |Ax \ [k
i=1Axi |. Then

⌘ +
kX

r=1

X

1i1<...<irk

"̄
X
i1,...,ir (x) = n� 1.

As x is a median of X, we have

dT (x,X) = k(n� 1)�
kP

r=1
[r

P
1i1<...<irk

"̄
X
i1,...,ir (x)]

= (k � 1)(n� 1) + ⌘ �
kP

r=2
[(r � 1)

P
1i1<...<irk

"̄
X
i1,...,ir (x)]

 dT (xk, X) = (k � 1)(n� 1)� (
P

1i1<k
|BX

i1,k
|+ 2

P
1i1<i2<k

|BX
i1,i2,k

|

+ · · ·+ (k � 2)
P

1i1<...<ik�2<k
|BX

i1,...,ik�2,k
|+ (k � 1)|BX

1,...,k|).

10



Hence,

⌘ 

(
kX

r=2

(r � 1)
X

1i1<...<irk

"̄
X
i1,...,ir (x))� (

kX

r=2

(r � 1)
X

1i1<...<ir�1<k

|BX
i1,...,ir�1,k|)


k�1X

r=2

(r � 1)
X

1i1<...<ir<k

|BX
i1,...,ir |, (7)

where the last inequality holds because "̄
X
i1,...,ir (x)  |BX

i1,...,ir |, for any r  k and
1  i1 < ... < ir  k.

For X = {x1, ..., xk} ⇢ Sn, let � be an arbitrary permutation on {1, .., k} such that

dT (x�(k), X) = min
i=1...k

dT (xi, X),

Consider the relabelling x
�
i := x�(i), for i = 1, ..., k, for elements of X. So for k � 3,

we can denote On = On,k : (Sn)k ! +,

On(X) :=
k�1X

r=2

(r � 1)
X

1i1<...<ir<k

|BX
x�
i1

,...,x�
ir
|.

Remark 1. Of course for X = {x1, ..., xk} ⇢ Sn with maximum distance d(xi, xj)
= n� 1, for i 6= j, On(X) = 0 and therefore, as we have seen in Proposition 1, every
median picks its adjacencies from the union of adjacencies of k permutations. But the
converse is not true, namely, there exist sets of permutations X such that On(X) = 0,
but adjacency sets of permutations have intersections with each other. So Theorem 1
gives a stronger statement when permutations of X are not located at the maximum
distance of each other but On(X) = 0 and in this case we still have the same property.
For example, consider three permutations id = id

(6) = 1 2 3 4 5 6 , x = 4 6 5 1 3 2,
and y = 4 2 6 5 1 3, and let X = {id, x, y}. We have Aid,x = {{2, 3}, {5, 6}}, Aid,y =
{{5, 6}}, Ax,y = {{5, 6}, {1, 5}, {1, 3}}, and Aid,x,y = {{5, 6}}. Then dT (id,X) = 7,
dT (x,X) = 5, and dT (y,X) = 6, and thus On(X) = |Bid,y| = |Aid,y \ Aid,x,y| = 0.

Motivated by Theorem 1 and rewriting

Ln,0(X) := {⇡ 2 Sn : |A⇡ \
[

x2X

Ax|  0},

for c � 0, the set of c-approximate median set and c-approximate median inverse for
X is defined in (1) and (2)

Ln,c(X) := {⇡ 2 Sn : |A⇡ \
[

x2X

Ax|  c},

11



and

L �1
n,k,c(⇡) := {(x1, ..., xk) 2 S

k
n : ⇡ 2 Ln,c({x1, ..., xk})}

= {(x1, ..., xk) 2 S
k
n : |A⇡ \

[

x2X

Ax|  c}.

Note that the left-invariance property of the breakpoint distance implies Ax,y =
A⇡x,⇡y, for ⇡, x, y 2 Sn. Therefore, for any ⇡, x 2 Sn and X = {x1, ..., xk} ⇢
Sn, dT (x,X) = dT (⇡x,⇡X), where ⇡X = {⇡x1, ...,⇡xk}. This yields ⇡Mn(X) =
Mn(⇡X), and therefore, for any x, y 2 Sn, |M�1

n,k(x)| = |M�1
n,k(y)|. Also, denoting

the bp median value of X by µn(X), we can write µn(X) = µn(⇡X). On the other
hand, for ⇡ 2 Sn and k-tuple (x1, ..., xk) 2 S

k
n, denote ⇡(x1, ..., xk) = (⇡x1, ...,⇡xk).

Similarly to the median inverse case, write

L �1
n,k,c(⇡x) = {(⇡x1, ...,⇡xk) : |A⇡x \ [k

i=1A⇡xi |  c}

= {⇡(x1, ..., xk) : |Ax \ [k
i=1Axi |  c} = ⇡L �1

n,k,c(x),

and thus, for any x, y 2 Sn, |L �1
n,k,c(x)| = |L �1

n,k,c(y)|, since (x1, ..., xk) 7! (⇡x1, ...,⇡xk)
is a bijection for any given ⇡ 2 Sn.

Let ⇠(n)1 , ..., ⇠
(n)
k be k permutations chosen uniformly and independently at random

from Sn. Roughly speaking, Proposition 1 implies that for any sequence (an)n2 ,
for which an ! 1 and an/n ! 0, as n ! 1, and any sequence of permutations
(⇡n)n2 , with ⇡n 2 Sn, |L �1

n,k,an
(⇡n)| somehow gives an upper bound for |M�1

n,k(⇡n)|.
This is formalized in the next theorem.

Theorem 2. Let (an)n2 be a sequence of real numbers diverging to 1, as n ! 1.

Let ⇠(n)1 , ..., ⇠
(n)
k be k permutations chosen uniformly and independently at random from

Sn. Then, as n ! 1,

On(⇠
(n)
1 , ..., ⇠

(n)
k )

an
! 0, in probability,

and
(Mn(⇠

(n)
1 , ..., ⇠

(n)
k ) ✓ Ln,an(⇠

(n)
1 , ..., ⇠

(n)
k )) ! 1. (8)

Proof. Let X = {x1, ..., xk} ⇢ Sn, and consider sets U2, ..., Uk ⇢ X, such that for a
fixed pair i1 6= i2 in {1, ..., k},

U2 = {xi1 , xi2} $ U3 $ ... $ Uk = X,

that is for any l = 2, ..., k � 1, |Ul+1 \ Ul| = 1. Then by definition

k[

i=2

BX
Ui

= Axi1 ,xi2
.
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This yields

|On(X)| 
X

i<j<k

|Axi,xj |.

So if |On(X)| � c, for c � 0, then for at least one pair of points in X, namely x, y,

|Ax,y| �
c�k�1
2

� .

Letting ⌧ be the minimum index i 2 {1, ..., k} such that

d
(n)
T (⇠(n)i , {⇠(n)1 , ..., ⇠

(n)
k })  d

(n)
T (⇠(n)j , {⇠(n)1 , ..., ⇠

(n)
k }),

for j = 1, ..., k, the last inequality implies that, for any " > 0

(On(⇠
(n)
1 , ..., ⇠

(n)
k ) � "an) 

⇣ [

i < j
i, j 6= ⌧

n
|A

⇠(n)
i ,⇠(n)

j
| � "an�k�1

2

�
o⌘


X

i < j
i, j 6= ⌧

⇣
|A

⇠(n)
i ,⇠(n)

j
| � "an�k�1

2

�
⌘
! 0,

as n ! 1, by Proposition 1, hence the first part is proved. To prove (8), note that
Mn(⇠1, ..., ⇠k) * Ln,an(⇠1, ..., ⇠k) implies that

an < |Am \ [k
i=1A⇠i |  |On(⇠1, ..., ⇠k)|,

for some median m 2 Mn(⇠1, ..., ⇠k). Therefore as n ! 1,

(Mn(⇠1, ..., ⇠k) * Ln,an(⇠1, ..., ⇠k)) 
✓
|On(⇠1, · · · , ⇠k)|

an
> 1

◆
! 0,

which completes the proof.

Remark 2. Although the theorem is true for any arbitrary diverging sequence
(an)n2 , it is useful to pick a small order sequence such that an/n ! 0, as n ! 0. In
fact, the smaller the order of an, the better the upper bound.

As discussed before, the bp distance is left invariant, and hence

(x 2 Mn(⇠
(n)
1 , · · · , ⇠(n)k )) = (y 2 Mn(⇠

(n)
1 , · · · , ⇠(n)k ))

for any x 6= y 2 Sn. It is not hard to see that, for any permutation, the probability to
be a median of ⇠1, · · · , ⇠k is too small, and this probability indeed converges to 0, as
n tends to 1.
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Proposition 5. Let ⇠(n)1 , · · · , ⇠(n)k be k permutations chosen independently at random
from Sn. For any ⇡n 2 Sn, as n ! 1,

(⇡n 2 Mn(⇠
(n)
1 , · · · , ⇠(n)k )) ! 0.

Proof. We denote by µ̃n,k the median value of ⇠(n)1 , · · · , ⇠(n)k . From Jamshidpey et al
(2014), for any arbitrary sequence (an)1n=1 with an ! 1 we have

µ̃n,k � (k � 1)n

an
! 0

in probability. This also follows from Theorem 2. On the other hand, for any ⇡n 2 Sn,
Proposition 4 implies that

kX

i=1

d(⇡n, ⇠
(n)
i )� n

an
=

dT (⇡n, {⇠(n)1 , · · · , ⇠(n)k })� kn

an
! 0

in probability. Thus ⇡n cannot be a median for {⇠(n)1 , · · · , ⇠(n)k }, with high probability,
and the proposition follows.

Although, the probability to be a median is too small, to study the expected
number of medians of ⇠1, · · · , ⇠k, it is important to find its exact value. It is clear that
(x 2 M(⇠1)) = 1/n! for any x 2 Sn. However as Mn(⇠1, ⇠2) = [⇠1, ⇠2], we obtain

(x 2 Mn(⇠
(n)
1 , ⇠

(n)
2 )) =

|{(y1, y2) 2 S
2
n : x 2 [y1, y2]}|
(n!)2

� 2

n!
+

✓
1

n!

◆2

.

For k random permutations one can use the notion of accessible points introduced
in (Jamshidpey, 2016, Chapter 4) and (Jamshidpey et al, 2014, Theorem 2) to get a
similar crude lower bound

✓
k

2

◆
|{(y1, y2) 2 S

2
n : x 2 [y1, y2]}|

(n!)k

for the probability to be an an-approximate median for any permutation x, an ! 1
as n ! 1.

So far, we have seen that

(|Mn(⇠1, · · · , ⇠k)|  |Ln,an(⇠1, · · · , ⇠k)|) ! 1,

and
|Mn(⇠1, · · · , ⇠k)|  |Ln,O⇤

n
(⇠1, · · · , ⇠k)|,

where O⇤
n = On(⇠1, · · · , ⇠k). The next theorem indicates how the approximate median

inverse set helps to find the expected number of c-approximate medians for a set of
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random permutations, for any given c � 0. To state the result, for c > 0, let

P(n)
k,c (⇡) = {(J1, ..., Jk) 2 (I(n))k : |A⇡ \

k[

i=1

Ji|  c},

and note that for c = 0, this definition is identical to the one in (4).

Theorem 3. Let n, k be natural numbers, and let c � 0 be a real number. Also let ⇡
be a permutation in Sn. Then

|Ln,c(⇠
(n)
1 , · · · , ⇠(n)k )| =

|L �1
n,k,c(⇡)|
(n!)k�1

,

where
L �1

n,k,c(⇡) =
[

(J̃1,...,J̃k)2P(n)
k,c (⇡)

H(n)
⇡ (J̃1)⇥ ...⇥H(n)

⇡ (J̃k),

and

|L �1
n,k,c(⇡)| =

X

(J̃1,...,J̃k)2P(n)
k,c (⇡)

kY

i=1

|H(n)
⇡ (J̃i)|.

Proof. From the definition

(⇡ 2 Ln,c(⇠
(n)
1 , · · · , ⇠(n)k )) =

|L �1
n,k,c(⇡)|
(n!)k

.

For x 2 Sn, let the indicator random variable �
c
x = 1 if x 2 Ln,c(⇠

(n)
1 , · · · , ⇠(n)k ) and

let �cx = 0 otherwise. It is then clear that

|Ln,c(⇠
(n)
1 , · · · , ⇠(n)k )| =

X

x2Sn

�
c
x =

n!|L �1
n,k,c(⇡)|
(n!)k

.

We must now count the number of elements in L �1
n,k,c(⇡) in terms of H(n)

⇡ (Ji), for

c > 0. As in the case of c = 0, let J = (J1, ..., Jk),J 0 = (J 0
1, ..., J

0

k) 2 P(n)
k,c (⇡), such

that J 6= J 0, then

(H(n)
⇡ (J1)⇥ ...⇥H(n)

⇡ (Jk)) \ (H(n)
⇡ (J 0

1)⇥ ...⇥H(n)
⇡ (J 0

k)) = ;.

Now, if (x1, ..., xk) 2 L �1
n,k,c(⇡), then there exist at most c adjacencies of ⇡ that are not

in [k
i=1Axi . Therefore, there exists (J1, ..., Jk) 2 P(n)

k,c (⇡) such that, for any i = 1, ..., k,

A⇡,xi = Ji implying that (x1, ..., xk) 2 H(n)
⇡ (J1)⇥ ...⇥H(n)

⇡ (Jk). On the other hand, if

(x1, ..., xk) 2
[

(J̃1,...,J̃k)2P(n)
k,c (⇡)

H(n)
⇡ (J̃1)⇥ ...⇥H(n)

⇡ (J̃k),
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then there exists (J1, ..., Jk) 2 P(n)
k,c (⇡) such that xi 2 H(n)

⇡ (Ji), for i = 1, ..., k, and
so A⇡,xi = Ji. Thus

A⇡ \
kS

i=1
Ji = A⇡ \

kS
i=1

A⇡,xi = A⇡ \
kS

i=1
Axi .

Therefore, |A⇡ \
kS

i=1
Axi |  c, and thus, (x1, ..., xk) 2 L �1

n,k,c(⇡).

Remark 3. We have

|P(n)
k,c (⇡)| =

cX

i=0

✓
n� 1

i

◆
(2k � 1)n�1�i

.

To see this, for any segment set J̄ of ⇡ with i adjacencies, for 0  i  c, we partition
A⇡ \ J̄ into 2k � 1 segment sets J̃A, ; 6= A ⇢ [k], and let Ji = [A:i2AJ̃A. Each

(J1, · · · , Jk) 2 P(n)
k,c (⇡) with A⇡ \ ([k

i=1Ji) = J̄ is determined by one and only one

such partition of A⇡ \ J̄ . Having (2k � 1)n�1�i such partitions, the claim is proved.
We have so far seen that to estimate |L �1

n,k,c(⇡)|, for c � 0, we need to count the

number of elements of H(n)
⇡ (Ji) for (J1, ..., Jk) 2 P(n)

k,c (⇡). In addition to its use for
counting the approximate medians as indicated in Theorem 3, for given ⇡ and I,
H⇡(I) can help to understand the mechanism under which a permutation ⇡ becomes
a median of k other permutations. Roughly speaking, for any ⇡ 2 Sn, we first parti-
tion A⇡ into 2k disjoint segment set J̃A, A ⇢ [k] with |J̃;|  c. Let Ji = [A:i2AJ̃A

and J̄ = J̃;. In fact J̃A is the set of all adjacencies of ⇡ included only in Ji, i 2 A and
not included in Jj , j /2 A. For each i = 1, · · · , k, we then construct all permutations
x 2 H⇡(Ji) that do not have any adjacency in common with ⇡ except those in Ji.
Then for any choice of x1, · · · , xk with xi 2 H⇡(Ji), we have ⇡ 2 Ln,|J̄|(x1, · · · , xk)
and d(xi,⇡) = n� 1� |Ji|. This, in addition, will provide an e�cient way to generate
a c-approximate median ⇡ of k random permutations ⇠1, · · · , ⇠k with breakpoint dis-
tances d(⇠i,⇡) = di, for any d1, · · · , dk � 0 with d1 + · · · dk � (k� 1)(n� 1)  c. More
precisely, sample a random permutation ⇠ and sample k independent random segment
sets I1, · · · , Ik from ⇠; I1, · · · , Ik may intersect. We construct random permutations
⇠i from Ii, i = 1, · · · , k by, first, assigning a random direction to the segments of Ii,
in one of the 2kIik di↵erent ways, and then, rearranging the segment sets and points
of [n] which are not present in Ii, such that A⇡,⇠i = Ii. As a result we have random
permutations ⇠1 · · · , ⇠k with a c-approximate median ⇠ such that d(⇠, ⇠i) = di.

The rest of the paper is devoted to a more detailed analysis of H⇡(I). We give

an explicit representation for the number of elements in H(n)
⇡ (Ji); see Theorem 4. To

establish this, for J 2 I(n), let

Rn(J) = {x 2 Sn : J ⇢ Ax}.
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Then, by inclusion-exclusion principle we have

|H(n)
⇡ (I)| =

X

I⇢J⇢A⇡

(�1)|J\I||Rn(J)|. (9)

To simplify this further, we introduce the type of a segment set J , I ⇢ J ⇢ A⇡, and
we will see that the value of |Rn(·)| is identical for two segment sets of the same type.

Formally, let Ī⇡ := A⇡ \I, and denote by Ī
(i)
⇡ , for i = 1, ..., kIk+1, the i-th segment of

Ī⇡ (i-th from the left when considered as a segment of ⇡). Note that Ī(1)⇡ and Ī
(kIk+1)
⇡

may be empty segments. The type of a segment set J 2 I(n), where I ⇢ J ⇢ A⇡, with
respect to ⇡ and I, is identified by � := (�1, ...,�kIk+1), where, for i = 1, ..., kIk+1, �i

is identified by the quadruple �i := (�(1)
i ,�

(2)
i ,�

(3)
i ,�

(4)
i ) 2 ⇥ ⇥{0, 1}⇥{0, 1}, where

�
(1)
i := |J\ Ī(i)⇡ | is the number of common adjacencies of J and Ī

(i)
⇡ ; �(2)

i := kJ\ Ī(i)⇡ k is

the number of segments of intersection of J and Ī
(i)
⇡ ; �(3)

1 = 0 and, for i = 2, ..., kIk+1,

�
(3)
i = 1 if the leftmost adjacency of Ī(i)⇡ is also in J and otherwise �

(3)
i = 0; and

finally �
(4)
kIk+1 = 0, and for i = 1, ..., kIk, �(4)

i = 1 if the rightmost adjacency of Ī(i)⇡ is

also in J and otherwise �
(4)
i = 0. The next theorem counts the elements of H(n)

⇡ (I).

Theorem 4. Let ⇡ be a permutation in Sn, and I 2 I(n) be a segment set contained
in ⇡. Then

|H(n)
⇡ (I)| =

X

�

8
<

:(�1)

kIk+1P
i=1

�(1)
i

kIk+1Y

i=1

"✓
�
(1)
i � 1

�
(2)
i � 1

◆✓ |Ī(i)⇡ |� �
(1)
i � 1

�
(2)
i � �

(3)
i � �

(4)
i

◆#
⇥

2
{|I|+

kIk+1P
i=1

�(2)
i �

kIk+1P
i=1

(�(3)
i +�(4)

i )}
(n� |I|�

kIk+1X

i=1

�
(1)
i )!

9
=

; , (10)

where the summation is over all �= (�i)
kIk+1
i=1 with �i = (�(1)

i ,�
(2)
i ,�

(3)
i ,�

(4)
i ) belongs

to {1, ..., |Ī(i)⇡ |}⇥ {1, ...,min{�(1)
i , |Ī(i)⇡ |+ 1� �

(1)
i }}⇥ {0, 1}⇥ {0, 1}.

To prove Theorem 4, we need the following lemmas.

Lemma 1. Let I be a segment set of Sn with m adjacencies and k segments. Then
the number of permutations in Sn containing I is equal to 2k(n�m)!.

Proof. As the segment set I has m adjacencies and k segments, each permutation
containing I has n�m�k points (genes) which are not used in I. Noting that segments
have two directions, we then have 2k(k+(n�m�k))! permutations containing I.

Lemma 2. Let I, J 2 I(n) and ⇡ 2 Sn, such that I ⇢ J ⇢ A⇡. Let � = (�i)1ikIk+1,

with �i = (�(1)
i ,�

(2)
i ,�

(3)
i ,�

(4)
i ), for i = 1, ..., kIk+ 1 be the type of J with respect to ⇡
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and I. Then

|Rn(J)| = 2
{|I|+

kIk+1P
i=1

�(2)
i �

kIk+1P
i=1

(�(3)
i +�(4)

i )}
(n� |I|�

kIk+1X

i=1

�
(1)
i )!.

Proof. We have

kJk = kIk+
kIk+1X

i=1

�
(2)
i �

kIk+1X

i=1

(�(3)
i + �

(4)
i ),

and also the number of adjacencies of J is equal to

|J | = |I|+
kIk+1X

i=1

�
(1)
i .

Therefore, Lemma 1 finishes the proof.

Lemma 3. Let ⇡ 2 Sn and I 2 I(n). The number of segment sets J , with
I ⇢ J ⇢ A⇡ and with type � = (�i)1ikIk+1 with respect to ⇡ and I, where

�i = (�(1)
i ,�

(2)
i ,�

(3)
i ,�

(4)
i ) for i = 1, ..., kIk+ 1, is

kIk+1Y

i=1

✓
�
(1)
i � 1

�
(2)
i � 1

◆✓ |Ī(i)⇡ |� �
(1)
i � 1

�
(2)
i � �

(3)
i � �

(4)
i

◆
.

Proof. The idea is to consider segment Ī(i)⇡ as a permutation and count the number of

possible ways one can choose a segment set J̃i from it with �
(1)
i number of adjacencies

and �
(2)
i number of segments. More explicitly, for i = 1, ..., kIk + 1, if (�(3)

i ,�
(4)
i ) =

(1, 1), then the number of ways we can do this is equal to the number of solutions of
two independent equations

X1 + ...+ X
�(2)
i

= �
(1)
i ,

with Xi � 1, for i = 1, ...,�(2)
i , and Y2 + ... + Y

�(2)
i

= |Ī(i)⇡ | � �
(1)
i , with Yi � 1, for

i = 2, ...,�(2)
i � 1, which is equal to

✓
�
(1)
i � 1

�
(2)
i � 1

◆✓|Ī(i)⇡ |� �
(1)
i � 1

�
(2)
i � 2

◆
=

✓
�
(1)
i � 1

�
(2)
i � 1

◆✓ |Ī(i)⇡ |� �
(1)
i � 1

�
(2)
i � �

(3)
i � �

(4)
i

◆

since �
(3)
i + �

(4)
i = 2. Similarly, for the cases (�(3)

i ,�
(4)
i ) = (0, 0), (0, 1), (1, 0), we can

prove that the number of ways one can choose a segment set J̃i from it with �
(1)
i
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number of adjacencies and �
(2)
i number of segments is

✓
�
(1)
i � 1

�
(2)
i � 1

◆✓ |Ī(i)⇡ |� �
(1)
i � 1

�
(2)
i � �

(3)
i � �

(4)
i

◆
.

Multiplying all possibilities for i = 1, ..., kIk+ 1 yields the result.

Proof of Theorem 4. The proof is a direct application of Lemmas 2 and 3, and (9),
the inclusion-exclusion principle.

5 Discussion

We introduced the notion of median inverse and used it to study the probability
that any given permutation x 2 Sn is an approximate median of k permutations

X = {⇠(n)1 , . . . , ⇠
(n)
n } chosen uniformly and independently at random from Sn. Due

to the left-invariance of the breakpoint distance, this probability is the same for all
permutations in Sn. Consequently, we computed the expected number of approximate
medians of X . The key was to observe that any median of X can have at most On(X )
adjacencies not from the set [k

i=1A⇠i . We showed that On(X ) is relatively small, and
as n ! 1, On(X )/an ! 0 in probability for any diverging sequence (an)n2 .

To determine the probability of a permutation x being an approximate median
of X , we required to find the size of the approximate median inverse set Ln,k,c. Our
counting technique relies on partitioning the set of adjacencies of any given permu-
tation x into 2k parts. Each part J̃A, indexed by a unique subset A ✓ [k], specifies
the adjacencies of x that should be present in a permutation xi for i 2 A and absent
in all other permutations xj for j /2 A. We define Ji = [A✓[k]:i2AJ̃A as the set of
adjacencies of x present in xi. By completing the segment set Ji, it becomes straight-
forward to count the number of possible ways to construct xi such that Ax,xi = Ji.
The count of such constructions, denoted by Hx(Ji), is computed in Theorems 3 and
4. As discussed after Remark 3, this approach also o↵ers an e�cient means to generate
a c-approximate median ⇡ from k random permutations ⇠1, · · · , ⇠k with breakpoint
distances d(⇠i,⇡) = di, for any d1, · · · , dk � 0 where d1 + · · · dk � (k � 1)(n� 1)  c.

Geodesic points, which represent the intermediate permutations between two given
permutations and serve as their medians, play a crucial role as they are instrumental
in constructing accessible median genomes (Jamshidpey et al, 2014). By employing the
techniques outlined in this study, we can establish an upper bound for the expected
number of geodesic points between two randomly selected permutations. This bound,
in turn, is very useful in analyzing geodesic point density, providing valuable insights
into its implications for comparative genomics.

In summary, not only does our analysis computes the chance of a permutation serv-
ing as an approximate median of random genomes, but it also establishes a systematic
method for generating such medians e�ciently. Our findings provide a foundation for
algorithmic approaches to quantify these probabilities e↵ectively. Although the com-
putations presented in this paper focus on unsigned linear unichromosomal genomes,
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it is important to emphasize that our methodology readily extends to all genome
types. Therefore, analogous results can be obtained for signed, unsigned, unichromo-
somal and multichromosomal genomes with linear and/or circular chromosomes. This
work holds significant promise for advancing our understanding of breakpoint median
genomes, and o↵ers a robust framework for future exploration and application.
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