
Steiner points in the space ofgenome rearrangements�David Sanko�y Gopalakrishnan Sundaramz John KececiogluxMay 8, 1995; revised January 17, 1996Abstract We present some experiences with the problem of multiple genome compari-son, analogous to multiple sequence alignment in sequence comparison, under the inversionand transposition distance metrics, given a �xed phylogeny. We �rst describe a heuristicfor the case in which phylogeny is a star on three vertices and then use this to approximatethe multiple genome comparison problem via local search.Keywords Permutation reversals, chromosome inversions, median problem, phylogeny1 IntroductionAlthough the mathematical nature of the problems are very di�erent, genome comparisonhas inherited much of the spirit of traditional research into sequence comparison. This paperexplores the concept of multiple genome comparison, analogous to multiple sequence align-ment in sequence comparison. And just as the original multiple alignment problem [17] wasposed in terms of optimizing the internal nodes of a given phylogenetic tree by minimizing thesum of an edit distance over the branches of that tree, we will extend the notion of genomerearrangement distance to the optimal positioning of Steiner points in the appropriate space.1The phylogenetic versions of the Steiner problem are generally decomposed into two sub-problems, the �rst embedded in the second. The �rst, or inner problem, is usually amenableto a treatment speci�c to the metric space in which the problem is situated, and may not becomputationally complex. It requires the optimization of the internal nodes of a given treewhere the positions of the n labeled terminal nodes are known. The second, or outer probleminvolves optimizing over the set of all trees with n terminal nodes, a 'hard' problem which canbe treated by worst-case exponential algorithms, or local optimization approaches, in a wide�A version of this paper appeared in International Journal of Foundations of Computer Science 7:1, 1{9,1996. An earlier version was presented at the Symposium on Combinatorial Methods for Genome Rearrange-ments, University of Southern California, March 18, 1994.yCentre de recherches math�ematiques, Universit�e de Montr�eal, CP 6128 succursale Centre-Ville, Montr�eal,Qu�ebec H3C 3J7, Canada. Email: sankoff@ere.umontreal.ca.zEnvironmental Systems Research Institute, Redlands, CA 92373, USA. Email: gsundaram@esri.comxDepartment of Computer Science, The University of Georgia, Athens, GA 30602, USA. Email:kece@cs.uga.edu1We point out that some other versions of multiple alignment not involving a tree (such as minimizing thesum of pairwise distances) do not have obvious analogues in genomic rearrangement space.1



Sanko�, Sundaram, and Kececioglu 2variety of metric spaces. Here we will be discussing the inner problem only. Mathematically,the problem is de�ned as follows: Given a �xed phylogeny (tree) T , together with a set ofk permutations (genomes), each of size n corresponding to the terminal (leaf) nodes, �nd aset of permutations corresponding to the internal nodes such that the total weight w(T ) isminimized, where w(T ) is de�ned asw(T ) = X(x;y)2T d(x; y):Here d(:; :) is the genome rearrangement distance metric de�ned on pairs of permutations.For example, in the tree given in Fig 1, we want to �nd the permutations corresponding tothe internal nodes a; b; c and d. A W
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ZDFigure 1 The problem of optimizing Steiner points. A;B;C;D;E and F are given permutations.X;Y; Z andW are permutations to be found so as to minimize the sum of the nine distances representedby the branches of the given tree.In this paper we consider a heuristic for the problem of computing the internal nodes,given a �xed phylogeny and the permutations corresponding to the terminal nodes under theinversion and transposition distance metrics. First, we consider a more basic problem, themedian problem, where T is a star on three vertices. We then divide the problem on anarbitrary binary tree into a number of overlapping median problems and apply the medianalgorithm iteratively to search for a heuristic solution to the original problem.The paper is organized as follows. In Section 2, we review previous work on computinggenome rearrangement distances between a given pair of permutations and its connection toour problem. In Section 3 we discuss some approximation algorithms for the median problemand a heuristic algorithm which gives a local optimum. In Section 4, we outline a heuristicalgorithm for multiple genome comparison, based on the iterative improvement method of [15].



Steiner points in the space of genome rearrangements 32 Previous workThe edit distances or genome rearrangement distances used in genomic comparisons can in-volve inversions in which the gene order along a chromosome is altered by the reversal of asegment of arbitrary length, transpositions where two adjacent segments interchange, recip-rocal translocation of segments between two chromosomes, duplication, deletion or insertionof chromosome segments, the fusion of two chromosomes into one or the �ssion of one intotwo, and other processes. This terminology originates in microscopy-based cytogenetics (cf.Shulz-Schae�er [18], Part VI, Swanson et al. [19], Ch. 6-7), but is readily interpretable onthe molecular level. In formulations of the problem involving inversions, the elements of thepermutations may be signed, indicating from which DNA strand the gene is read, so thatwhen a segment is reversed, the signs of the elements in the segment change polarity. (Prob-lems involving inversions of unsigned permutations are also important.) In addition, versionsof these distances based only on intrachromosomal events, such as inversion or transposition,can be de�ned for circular as well as linear chromosomes. An e�ort at a formalization of theseprocesses in a common framework can be found in earlier papers [13, 14].Kececioglu and Sanko� [11] (extended version of [8, 9]) considered the problem of com-puting the minimum reversal distance between two given permutations in the unsigned case,including approximation algorithms and an exact algorithm feasible for moderately long per-mutations. Bafna and Pevzner [1] gave improved approximation algorithms for this problem.Kececioglu and Sanko� [10] also found tight lower and upper bounds for the signed case andimplemented an exact algorithm which works rapidly for relatively long permutations. Re-cently Hannenhalli and Pevzner [5] have shown that the signed problem is only of polynomialcomplexity. Computation of the transposition distance between two permutations was con-sidered by Bafna and Pevzner [2]. Sanko� et al. [16, 12] implemented and applied a heuristicto compute an edit distance which is a weighted combination of inversions, transpositionsand deletions. Kececioglu and Ravi [7] began the investigation of translocation distances, andHannenhalli [3] has shown that a formulation is of polynomial complexity.3 Computing the medianConsider a special case of multiple genome comparison where the phylogeny is a star on threevertices. This is the median problem, formally de�ned as follows: Given three permutationsA;B and C each of size n, we want to �nd a permutation S� such thatS� = argminS2�n fd(S;A) + d(S;B) + d(S;C)g ;where �n is the set of all permutations of length n and d(A;B) is the rearrangement distancebetween permutations A and B.3.1 Approximate solutions for the medianIt is not known whether the problem of computing the median for genome rearrangementdistances is NP-hard; indeed, except for translocations and signed inversions [3, 5], the com-plexity of computing the distance between two permutations remains open.It is easy to �nd an approximation algorithm for the median problem, if there is an oracleto compute the distance between two permutations, as the weight of the minimum spanningtree on the three given points is at most 43 the optimal tree T �, for any arbitrary metric.



Sanko�, Sundaram, and Kececioglu 4For comparing two permutations under the inversion metric, Hannenhalli and Pevzner [5]give a polynomial algorithm for the signed case. Hence in this case, we can construct atree whose total weight cannot exceed 43 times that of the optimal tree T �, by solving thetwo-permutation problem for the pairs (A;B), (B;C) and (C;A) and outputing the minimumspanning tree. For the unsigned case, Bafna and Pevzner [1] give a 74 -approximation algorithm.This implies we can �nd a tree with associated reversals whose weight cannot exceed 73 timesthe optimum. The problem of �nding a tree with associated reversals whose weight does notexceed 2 times the optimum remains open. For the transposition metric, Bafna and Pevzner [2]give a 32 approximation algorithm for the two permutation case; hence the minimum spanningtree for this metric is at most twice the length of the optimal median tree.3.2 Metric lower boundsHaving an approximation algorithm is theoretically assuring, but in applications we must dobetter than a factor of 2 in the transposition case and a factor of 73 in the unsigned reversalscase. In the two-permutation case under the inversions metric, Kececioglu and Sanko� [10, 11]give algorithms that are e�ective in practice by providing relatively tight lower and upperbounds, though the guaranteed theoretical bound is only twice optimal. For the transpositionsmetric between two permutations, while Bafna and Pevzner's algorithm has a guarantee of1.5, their lower bound based on the cycle decomposition is generally much better than thiswould suggest.For the median problem, however, �nding tight lower bounds appears to be more di�cult.A simple lower bound, based on the triangle inequality, is12fd(A;B) + d(B;C) + d(C;A)g:This lower bound, which holds for any metric, implies that when the largest of the threepairwise distances is equal to the sum of the other two pairwise distances, the minimumspanning tree is an optimal median tree.3.3 A heuristic for the median problemEven though the metric lower bound is not su�ciently tight to make feasible branch-and-bound or other exhaustive searches for the median problem, we may still employ heuristics,sacri�cing a guarantee of optimality in exchange for some computational experience that mayby chance illuminate some of the features of a solution.The following heuristic appears to work quite well on many instances from biologicalpractice. First, we compute an initial solution grid, as follows for example for the inversionsmetric: For the pair of permutations A and B, we compute an optimal series of inversionsusing the branch and bound algorithm of Kececioglu and Sanko� [11]. Then, from eachintermediate permutation X in this series, we again compute an optimal series of inversionsbetween C and X. The entire procedure is repeated for the pairs B;C and C;A, as shown inFigure 2.To construct the grid for the transposition metric, we can either use a greedy algorithm,or a branch-and-bound algorithm based on the lower bound of Bafna and Pevzner [2].Then, from each permutation X in the initial solution grid, we initiate a search for alocal optimum by �nding the best search direction in a neighborhood of X, i.e. among all
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CFigure 2 The initial solution grid.permutations which are at a genome rearrangement distance of one from X. We stop eachsearch when no further improvement can be made, and choose the best local optimum asour candidate for the global solution. We have implemented our heuristic using the code ofKececioglu and Sanko� [10, 11] for signed and unsigned inversions and a greedy algorithm fortranspositions.As an example, we ran our analysis on three signed permutations of length 33, representingmitochondrial gene orders in humans (A), sea urchin (B), and fruit 
y (C):A: (26 13 17 12 -24 15 18 32 -2 -16 -3 -33 4 -28 7 5 1 10 19 25 22 11 29 14 20 -21 - 8 6 30 -239 27 31)B: (26 4 25 22 5 1 -28 19 11 29 20 -21 6 9 27 8 30 23 -24 16 14 -2 32 3 -31 15 -7 33 10 13 1712 18)C: (-26 -31 -27 12 -24 15 18 32 -3 -33 4 13 5 7 1 10 19 2 25 16 29 8 -9 -20 -11 -22 30 -23 21 628 -17 -14)We found the following three solutions of length 39, yield an upper bound on the optimumvalue. (The three genomes, for example, are at distances 5, 19, and 15 from the �rst solutionbelow.) The general metric lower bound of Section 3.2 for this data has value 37.5. Thus,the optimal solution to the median problem must be within one inversion of the metric lowerbound. It is surprising that the general lower bound is so tight in this metric space.(26 13 17 12 -24 15 18 32 25 22 11 29 14 -2 -19 -10 -1 -5 -3 -33 4 -28 7 16 20 -21 23 -30 -6 8 927 31)(2 -14 -29 -11 -22 -25 -32 -18 -15 24 -12 -17 -13 -26 -31 -27 -9 23 -30 16 20 -21 -8 6 -7 28 -433 3 5 1 10 19)(33 3 16 20 -21 6 -7 28 -32 -18 -15 24 -12 -17 -13 -26 -31 -27 -9 23 -30 -8 5 1 10 19 2 -14 -29-11 -22 -25 -4)A few observations that emerge from our simulations are illustrated by this example. First,



Sanko�, Sundaram, and Kececioglu 6n avg. no. sol. avg. lower bound avg. value10 4 10 1120 8 27 2930 9 43 5040 4 58 6450 2 72 86Table 1 Solutions of simulated problems using inversions; case of signed permutations.n avg. no. sol. avg. lower bound avg. value10 3 8 920 7 17 1830 8 24 2740 4 35 3750 8 43 47Table 2 Solutions of simulated problems using transpositions on unsigned permutations.the number of best solutions found by the heuristic is not very large. This contrasts with thetwo-permutation problem in which there are generally an extremely large number of optimaltrajectories, and trajectory mid-points, between two permutations. Second, the solutionsare relatively close together as can be readily seen by inspecting the three solutions in theexample. A "triangulation" e�ect in the median problem seems to pin down the solution,2 incontrast with the two-permutation case, where the average distance between the mid-points ofoptimal trajectories between two random permutations is roughly half the inversion distance.Tables 1 and 2 illustrate experimental results for random permutations in the signed andunsigned cases.4 A heuristic for multiple genome comparisonWe return to the main problem, i.e. given a �xed tree T associated with known permutationsat the terminal nodes, �nd a set of permutations for the internal nodes so that the totalweight of the tree is minimized. Jiang, Lawler and Wang [6] show that given a �xed topologyone can label the internal nodes with leaves such that the weight of the tree is at most twiceoptimal under any arbitrary metric.Our heuristic for multiple genome comparison is analogous to the iterative improvementmethod of Sanko�, Cedergren and Lapalme [15]. We assume that the given phylogeny isan unrooted binary tree. An unrooted binary tree on k terminal nodes can be uniquelydecomposed into k � 2 3-stars corresponding to the internal nodes. See Figure 3. We start2Other examples of solutions to median problems are given by Hannenhalli et al.[4].
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Figure 3 Decomposing the tree problem into a set of median problems.with a good initial solution and iteratively improve the stars on three vertices, by the heuristicfor median. This process will eventually converge to a local optimum.We have implemented the algorithm and tested it in two kinds of experiments. First,we chose the innermost node of the tree in Figure 3 as the root and assigned the identitypermutation to it. We then performed k random reversals along each branch of the tree togenerate the permutations at the leaf nodes. For small values of k, the algorithm reconstructsthe identity permutation in �nding an optimal total tree length (n � 1)k. For larger k thealgorithm �nds solutions more economical than the "true" con�guration that generated thedata. In the second kind of experiment, the terminal nodes were simply assigned randompermutations. Evaluating the results of the analyses was not straightforward in this case.Not knowing better lower bounds than the one provided by Jiang et al. [6], we can notdetermine whether our solution is close to the optimum. Moreover, �nding a good initialsolution is crucial; assigning random permutations to the internal nodes for an initial solutionconverges in this context to a local optimum far from the global optimum.AcknowledgementsResearch supported in part by grants from the Natural Sciences and Engineering ResearchCouncil of Canada and the Canadian Genome Analysis and Technology program. DS is afellow of the Canadian Institute for Advanced Research.
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