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Abstract. The quantification of comparative genomics dates from 1984 
with the work of Nadeau and Taylor on estimating interchromosomal ex- 
change rates based on the rearrangement of chromosomal segments in human 
versus mouse genomes. We reformulate their analysis in terms of a probabilis- 
tic model based on spatial homogeneity and independence of breakpoints and 
gene distribution. We study the marginal distribution of the number of genes 
per segment and the distribution of the number of non- empty segments as a 
function of the number of genes and segments. We propose a rapid algorithm 
for ident'ffying a given number of conserved segments in noisy comparative 
map data. Finally, we propose a model which incorporates a degree of in- 
homogeneity in the distribution of genes and/or breakpoints. Comparative 
maps of human and mouse genomes serve as test data throughout. 

1 Introduction 

During evolution, inter- and intrachromosomal exchanges such as reciprocal translo- 
cation, transposition and inversion disrupt the order of genes along the chromosome 
(Figure 1). 

In comparing two divergent genomes, a contiguous stretch of chromosome in 
which the number and order of homologous genes is the same in both species, i.e. 
has not been interrupted by any of the rearrangement processes that have occurred 
in either lineage, is called a conserved segment. The number of conserved segments 
increases as the5' are disrupted by new events, so that  they tend to become shorter 
over time. The number of chromosomal segments conserved during the divergence 
of two species can be used to measure their genomic distance. 

An early and influential contribution to the quantitative methodology of com- 
parative genomics was made by Nadeau and Taylor in 1984 [3], focusing on inter- 
chromosomal exchange as the major mechanism in the rearrangement of mammalian 
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genomes. Our formulation of the Nadeau-Taylor model of genomic divergence as- 
sumes that each reciprocal translocation breaks chromosomes at random points on 
two randomly chosen chromosomes. As a consequence when we compare two diver- 
gent genomes, the endpoints of the conserved segments making up each chromosome 
are uniformly and independently distributed along its length (spatial homogeneity 
of breakpoints). We also assume that which genes of a genome are discovered and 
mapped first does not depend on their position on the chromosome (spatial homo- 
geneity of gene distribution), nor on their proximity to each other (independence of 
map positions). 

c h r o m o s o m e  1 ~ c h r o m o s o m e  1' 

a b c d r e c i p r o c a l  ~ a b y z 
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Fig. 1. Schematic view of genome rearrangement processes. Letters represent positions 
of genes. Vertical arrows at left indicate breakpoints introduced into original genome. 
Reciprocal translocation (top) exchanges end segments of two chromosomes. Inversion 
(center) reverses the order of genes between two breakpoints (dotted segment at right). 
Transposition (bottom) removes a segment defined by two breakpoints and inserts it at 
another breakpoint (dotted segment at right), in the same chromosome or another. Gene 
order conserved (possibly inverted) within segments. 

2" T h e  M a r g i n a l  P r o b a b i l i t y  o f  r - g e n e  S e g m e n t s  

In trying to count the number of conserved segments for the quantification of evolu- 
tion, we must deal with underestimation due to conserved segments in which genes 
have not yet been identified in one or both species. There are two in Figure 2: one 
from chromosome 4 of Genome 2 and the other from chromosome 17. This is par- 
ticularly important if there are relatively few genes common to the data sets for a 
pair of species, so that many or most of the conserved segments are not represented 
in the comparison, and genomic distance may be severely underestimated. Nadeau 
and Taylor [3] in 1984 could only treat 13 segments out of the 130 or so now known 
to exist (see Section 4.3 below). 

We model the genome as a single long unit broken at n random breakpoints into 
n + 1 segments, within each of which gene order has been conserved with reference 
to some other genome. (Little is lost in not distinguishing between breakpoints and 
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Fig.  2. Fictitious example of conserved segments indicated on a chromosome from Genome 
1, with each segment labeled between its endpoints (adjacent arrows) as to which chro- 
mosome it is found on in Genome 2. Homologous genes that have been discovered to date 
are indicated with letters. 

concatenat ion boundaries separa t ing  two successive chromosomes [5].) The marginal  
probabi l i ty  that  a segment contain r genes is given by the following theorem [7]. 

T h e o r e m  1. Consider a linear interval of length 1, with n > 0 uniformly distributed 
breakpoints that partition the interval into n + 1 segments. Suppose there are m 
genes also distributed uniformly on the interval between 0 and 1, and independently 
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Fig .  3. Comparison of relative frequencies n,/~"~r>o r~ of segments containing r genes 
with predictions of Nadeau-Taylor model. Value of n in formula for Q is taken to be 141 
(dotted curve) or 181 (uninterrupted curve), as estimated by the maximum likelihood 
method of Section 3.2 or the Kolmogorov-Smixnov method of Section 5, respectively. Both 
curves show values for Q(0), though zero is not in the range of the conditional distribution, 
to permit a comparison of the estimated number K(m,  n)Q(0) of unobserved (empty) seg- 
ments with the predictions K(m, n)Q(r) for positive r, where K(m,  n) = (n+l)m/(n+m).  
Three data points are off-scale, with r -- 54, 65 and 83 and the vertical axis is interrupted 
to allow an expanded scale, facilitating more detailed visualization of f(r) and Q(r), r > 1. 
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of the break'points. For an arbitrary segment, the probability that it contains r genes, 
0 < r < m,  is then 

n + m  / n+mr 

We can only partially compare the theoretical d i s t r ibu t ion / / ( r )  with nr, the num- 
ber of segments observed to contain r genes, since we cannot observe no, the number 
of segments containing no identified genes. We can at least compare the relative fre- 
quencies ](r) = ~ with the conditional probabilities Q(r) = II(r  ]r > 0). 

This is seen in Figure 3, where the largest discrepancy is the comparison between 
f(1) and Q(1). We will discuss this discrepancy, how to interpret it, and the conse- 
quences of ignoring it, in Section 5. 

3 T h e  I n f e r e n c e  P r o b l e m  

It might seem that the number of segments nr observed to contain r genes, for 
r = 1, 2..., would be useful data for inference about the Nadeau-Taylor model, in 
particular about n, the unkno~-n number of breakpoints. Though we will see in 
Section 5 that these data are indeed useful for generalizing the model, they are not 
necessary for the basic distribution given in Theorem 1. 

3.1 The Sui~ciency of the N11mber of Observed Segments 

It is remarkable that to estimate n from m and the nr, for r = 1,2..., only the 
number of non-empty segments a = ~r>o nr is important [4]. 

T h e o r e m  2. The variable a is a sufficient statistic for the estimation of n. 

3.2 Estimating n from a 

To estimate n, we study P(a, m, n), the probability of observing a non-empty seg- 
ments if there are m genes and n breakpoints. Combinatorial arguments give: 

Theorem 3. 

P ( a , ~ , ~ )  -- 

(-:') 

After obser~dng m and a it is an easy matter to find the value of n which maximizes 
P, i.e. the maximum likelihood estimate. 
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Another approach, for ex t remely  large values of the parameters,  is to use the 
mean and variance of P ( a ,  ra, n): 

(n + 1 ) n m ( m  - 1) 
E ( a , m , n )  = (n+(n +l)ram) ' Var(a ,  ra, n )  = ( n + m  - 1)(n + r a )  2 

A gaussian approximation allows accurate  calculat ion for high values of ra and n. 
To do maximum likelihood es t imat ion,  the  log of  the gaussian density w i t h / z  = 
E ( a ,  ra, n ) , a  2 = Var(a,  ra, n)  is differentiated with respect to n and set equal to 

zero. The solution is the only posi t ive root  of the  following degree 6 polynomial:  

rn 3 _ 2 a m  3 + a z m  3 _  2ra4 + 4 a m  4 _  2 a  2ra4 + m 5 _  2ara5  + a sra5 _ 2 a m 2 n  

+ a 2 r n S n  + m 3 n  + 2 a r n S n - a S m 3 n -  3 m 4 n  + 4 a m 4 n -  2 a 2 r a 4 n  + 2 m n n  

- 4  a ra n n + 2 a z ran n + ra n z - a z m n 2 - 4 ra s n 2 - 4 a m s  n 2 + 7 a 2 m s n 2 

+4  ra3 n ~ + 10 a m s n 2 - 13 a 2 rn s n s - 2 ra4 n~ _ 4 a ra4 n s + 7 a s ra4 n 2 + ran ns 

- 2  a ran n ~ _ a 2 n 3 _ ra n s _ 2 a m n s + 9 a 2 m n s - ra~ n 3 + 2 a m ~ n 3 - 17 a s ras n s 

+3ra3 n 3 + 6 a r a  3 n 3 + 8 a  ~ m  s n s _ 2 ra  '! n s _ 4 a m  4 n  s + 3 a  s n  4 - 3 r a n  4 - 2 a m n  4 

- 8 a  2 m n  4 + 4 m  2 n  4 + 8 a r a  2 n  4 + 2 a  2 m  s n  4 - 3 r a 3 n  4 _ m 4 n  4 _  a 2 n  5 _  m n  n 

+ 2 a m n  n -  2 a  2 r a n  5 + 4 a m  z n  5 -  2 m  s n  5 - a s n  6 + 2 a m n  n -  ragn  n 

The approximation is not  necessary for current  da ta  levels, but  both methods give, 
for m = 1423, a = 130, valid values for the man-mouse  comparison in the summer 
of 1996 (d. Section 4.3), an es t imate  of 141 for n, suggesting that  less than 10% of 

the segments have not yet been observed. 
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Fig. 4. (a). Schematic example of conserved segment in a human chromosome B and a 
mouse chromosome C. Genes u and v have homologues elsewhere in the mouse and human 
genomes, respectively, and thus limit the leftward and rightward extension of the segment. 
(b). Experimental mistake in the chromosomal assignment of s to mouse chromosome D, 
quantitative error in the assignment of q and/or r in the human or mouse map, or inversion 
of qr or transposition of q or r, results in the erroneous identification of three segments, 
p, qr, t, instead of just one, in human chromosome B and mouse chromosome C, and an 
additional one, s, in human chromosome B and mouse chromosome D. 
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4 T h e  I d e n t i f i c a t i o n  o f  C o n s e r v e d  S e g m e n t s  

Conserved segments were defined in the Introduction to be regions of chromosomes 
in two related species in which both gene content and gene order are parallel (Fig- 
ure 4(a)). As map data accumulate, however, it becomes increasingly difficult to 
find segments that satisfy the criteria of content and order perfectly. This can be 
attributed in part to experimental error - either gross mistakes in chromosomal as- 
signment of genes or quantitative errors in map positions affecting apparent gene 
order. In addition, in the comparison of multichromosomal species such as humans 
and mice, we may wish to consider the segment structure to be that produced by 
translocation, and to consider as "noise" the effects of high rates of inversion and 
transpositions of small regions of chromosomes (Figure 4(b)). 

Our hypothesis is that we can recover the configuration of conserved segments 
resulting from the evolutionary history of reciprocal translocations, and thus ac- 
count for the gross differences between the genomes, by minimizing appropriately 
weighted mapping error plus rearrangement costs. 

We do this with a variant of single link stepwise cluster analysis performed 
simultaneously on all conserved synteny sets (sets of genes occurring in common on 
one human chromosome and one mouse chromosome), with the interim results from 
each cluster analysis affecting the current s tate of all other cluster analyses [6]. 

4.1 The Objective Function 

Let c <_ clc2 be the total number of conserved synteny sets, where cl and c2 are 
the number of chromosomes in species 1 and species 2, respectively, c is also the 
smallest number of segments that  can be produced by any analysis, grouping all 
genes belonging to a conserved synteny, no mat te r  how dispersed they are along the 
chromosome, into a single conserved segment, not allowing for a single conserved 
synteny to be the result of two or more translocation events. At the other extreme, 
if we assume that each gene defines a different conserved segment and that genes are 
adjacent in two genomes only by coincidence, we obtain m segments, the total num- 
ber of homologous genes identified in the two genomes. All solutions lie somewhere 
between these two extremes. For an appropriate choice of weighting parameters, 
a ,  ~, V, and for all a, c _< a < m, we wish to find the subgroupings of conserved 
syntenic genes into a segments so as to minimize 

D =  ~'~Di,  
i = 1  

where Di is a weighted measure of the compactness, density and integrity of segment 
i. Formally, 

= - _ __ max I x - y l + a s [ i ( 2 ) ] - Z r ( i ) ,  Di 7x,u,i(1)max I z yl + as[i(1)] + Tz,u,i(2 ) 

where xei(j) refers to a gene (or its map coordinate) in segment i in species j ,  r(i) 
indicates the number of homologous gene pairs in segment i and s[i(j)] denotes the 
number of other segments with elements within the range of segment i in species j .  
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4.2 The  A l g o r i t h m  

Direct minimization of D -- ~ Di is generally not feasible, because what is included 
in segment i impacts the quality of other segments and vice-versa. Instead we pro- 
pose a rapid stepwise upper-bound algorithm and show sufficient conditions for it 
to calculate D exactly. An advantage of this method is that it constructs solutions 
for all a in one pass. 

Our procedure starts with the extreme solution where a = m, then combines 
step by step genes syntenic in both genomes into conserved segments. 

Basic to the algorithm is the notion of a rooted binary branching tree Ti with 
the leaves, or terminal nodes, associated with the mi genes in conserved synteny i. 
This is illustrated in Figure 5. 

m o u s e  c h r o m o s o m e  B m o u s e  c h r o m o s o m e  C 

Fig. 5. Two rooted binary trees each representing successive solutions to the problem of 
identifying conserved segments within two conserved syntenies. Thin lines connect homol- 
ogons genes in the two genomes. Note that the conserved syntenies overlap on the human 
chromosome and that the number of segments from the synteny on the right intervening 
between genes on the left changes as the trees are constructed from bottom up. 

Each nonterminal node v denotes the formation of a segment from two smaller 
segments vl, v2 of distance d(vl ,  v2) = D ( v )  apart. Note that d is a not a metric, and 
it is defined only for two segments vt and v2 containing genes in the same synteny 
sets. 

After precalculating all the distances d among the terminal nodes (segments 
consisting of single genes), we apply the following: 

A l g o r i t h m  conseg 

Let mk be the number of genes in the k-th conserved synteny. Set a = m = ~ ink, 
the total number of homologous pairs of genes, and let seg to be the set of all these 
genes. For all k, set Sk = - f l m k .  Initial construction step for Tk: Identify the ter- 
minal nodes with the mk genes in the conserved synteny. 
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while there remains a conserved synteny with > 2 segments in seg, 
Find the two segments vx and v2 that minimize d(vl, v2). 

Combine vl, v2 to form v. Add v to seg. Remove vl and v2. 
if v contains genes in the k-th synteny 

Update Tk to indicate branching of v to Vl, v2 

Set Sk = Sk + D(v) - D(vx) - D(v2). 
endi f  
Set a = a - 1, and output configuration of the a segments in seg. 
Recalculate all distances d given the decrease in number of segments in seg. 
Set D" = ~ Sk. 

endwl~le  

A relatively literal implementation of this algorithm has worst-case performance in 
time cubic in m, the number of genes. Within the while loop, the distance update 
can take quadratic time (without any sophisticated data structures), though with 
small proportionality factor, and the loop itself must be executed m - 1 times. 
The search step is carried out at the same time as the update step. Improvement, 
possibly to quadratic performance, could be achieved by tracking which segments 
intervene in which other segments. With available data, however, there is little need 
for improved code. 

The clustering procedure may seem a roundabout way of approaching the ob- 
jective function, but to the extent that segments are disjoint, or overlap to a very 
limited extent, the following theorem [6] becomes pertinent: 

Theorem 4. For any a, the upper bound D* achieved by the algorithm is equal to 
the objective D if no segment intervenes in any other segment by virtue of more 
than one gene. 

4.3 How Many Segments? 

What value of a is the most reasonable? To answer this, we compare the number 
Ui of different human chromosomes represented among the ai segments on a single 
mouse chromosome i, with the number ui expected under a random hypothesis: 

21  a, 
ui = 2211- ( ~ )  ]. 

We chose the parameter x~ues and a so that 

19 19 

~-~ui = ~-~" Vi. 
i=1  i=1 

In our data set, these values are a = 130, a = 30, ~ = 1 and • = 0.3. There are 
113 conserved syntenies in the data. Since we infer 130 segments, this means that 
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about one conserved synteny per chromosome consists of more than one conserved 
segment, or that almost all the observed fragmentation of conserved syntenies is 
due to intrachromosomal movement and not interchromosomal events. 

5 Gene Clumping and Non-uniform Densities 

In Section 3.2, we used the value of a = 130 satisfying the criterion of Section 4.3 and 
130 segments produced by the identification procedures in Section 4.2 as data for 
the maximum likelihood estimation of the total  number, observed and unobserved, 
of segments. This was calculated making use of the exact values of (or, equivalently, 
the gaussian approximation to) P(a, re, n), a valid procedure insofar as the basic 
Nadeau-T~-lor model represents reality, with uniformly distributed breakpoints and 
uniformly and independently distributed genes. One check on this is the comparison 
in Figure 3 of the distribution predicted by the model Q(r) = II(r [r > 0) (dotted 
curve in the figure) with the f(r),r = 1,..., the relative frequency of segments 
containing r genes, r = 1, .... 

Based on data for 1423 genes and an analysis giving a = 130 segments, we 
find two major discrepancies. First, f (1)  is far greater than Q(1), and second, f(r) 
is systematically less than Q(r) for r in the range [3,18]. To the extent the basic 
Nadeau-Taylor model needs refinement, we must rely less on Theorem 2 and max- 
imum likelihood estimation based on it. Instead we use in this section a method 
which is most sensitive to a systematic discrepancy between f ( r )  and Q(r) over a 
range of values of r, namely a Kolmogorov-Smirnov approach. To estimate n, we 
simply choose the value which minimizes supr IF(r) - G(r)[, where F and G are 
the cumulative distributions of ] and Q, respectively. As is reflected in Q(0) partic- 
ularly and in the first few other inflated values of Q(r) in Figure 3 (uninterrupted 
curve), compared to the maximum likelihood estimate of 141, the Kolmogorov- 
Smirnov-based estimate for n is 181, due to its sensitivity to the large IF(l)  -G(1 ) [  
discrepancy. (Indeed, supr IF(r) - G(r)[ = IF( l )  - G(1)[ = f(1) - Q(1) = 0.095.) 

The excess observations accounting for the value o f / ( 1 )  may include a good 
proportion of experimental error, as we previously [6] noticed from changes in the 
data set over time for many of the chromosomal assignments involved. By removing 
the case r = 1 from the analysis (involving 27 of 130 observed segments), and 
conditioning both f and Q by r _> 2, we obtain a better fit as seen in Figure 6. 
With the effect of f(1) removed, n is estimated at 129, greatly diminished from the 
exaggerated value of 181. The statistic sup~ [F(r)  - G(r)[ is dramatically reduced 
from 0.095 to 0.043. The range for which f(r) is systematically less than Q(r) is 
contracted to [12,18]. 

We undertook two approaches to modifying our basic model, relaxing the hy- 
potheses of independence of gene distribution and uniformity of gene and breakpoint 
distributions [2]. 

Instead of distributing the genes one at a time according to the uniform dis- 
tribution, we constructed a model where z genes, where z was fixed to be 2,3, or 
more, were positioned at the same point. (Thus, only ~ points were sampled from 
the uniform.)This non-independence of gene distribution turned out to have little 
effect on the general shape of the predicted frequency curve, despite its effect on 
the first few values of r. 
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A second type of modified model divided the genes into two fractions and the 
breakpoints into two fractions and distr ibuted the first fraction of genes among 
the first fraction of breakpoints and the rest of  the genes among the remaining 
breakpoints. 

The inhomogeneities of distribution rectify to some extent the discrepancies 
between the predictions and the observed results, both when data on r = 1 are 
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Fig. 6. Comparison of relative frequencies f ( r ) / (1  - f(1)) of segments containing r > 2 
genes with predictions of Nadeau-Taylor model. Value of n in formula for Q (curve shown 
also conditioned for r >_ 2) is taken to be 129, as estimated by minimizing a Kol- 
mogorov-Smirnov-type statistic. Values shown for Q(0) and Q(t), though [0,1] is outside 
the range of the conditional distribution, to permit a comparison of the estimated number 
of empty or single-gene segments with the predictions for r > 2. Three data points are 
off-scale, with r = 54, 65 and 83. 

retained and when they are excluded. For example, when the genes are divided into 
two equal groups, and the breakpoints are divided unevenly, proportion a in one 
par t  of the genome and 1 - a in the other,  the best  fit, as obtained by minimizing 
supr IF(r) - G(r) I with respect to a is i l lustrated in Figures. 7 and 8. In the case 
where r = 1 data are included, half the  genes are distributed within a portion of the 
genome containing 20% of the 157 breakpoints  and the other half among the other 
80%. Note tha t  157 is a distinct reduct ion from the  181 needed in the homogeneous 
model, and the statistic of goodness-of-fit is reduced from 0.095 to 0.079. The fit of 
the model to the data is improved bo th  for r = 1 and in the range [12,18]. In the 
case where the r -- 1 segments are excluded, the  best fit is with n = 118 and the 
split of the breakpoints is 29% vs. 71%. Here the improvement in supr IF(r) -G(r ) l  
is from 0.043 to 0.036 as the fit is improved for r = 2 and in the range [12,18]. 
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6 Discussion 

The analytic insights of Nadeau and Taylor [3] and the prophetic accuracy of their 
estimation of the number of segments conserved between the mouse and human 
genomes have become increasingly relevant with the recent massive increases in the 
available genomic data, whether genetic maps, physical maps or complete sequences. 
Their work serves as a starting point for a variety of algorithmic, probabilistic, 
statistical and other applications of mathematical science. 

6.1 T h e  Original  A p p r o a c h  o f  N a d e a u  a n d  Tay lo r  

In the intellectual climate of the early 80's, Nadeau and Taylor used r _> 2 as a 
criterion for the existence of a conserved segment, in contradistinction to a model 
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Fig. 7. Comparison of relative frequencies .f(r) of segments containing r genes with pre- 
dictions of inhomogeneous genome model. Values of n and c~ are taken to be 157 and 0.2, 
respectivel~; as estimated by minimizing Kolmogorov-Smi~nov-type statistic. 

of random gene scrambling throughout the genome. Their analysis was based on 
the estimation of average segment length, in centhnorgans, prior to the estimation 
of of the number of segments. This work involved a good number of mathematical 
assumptions and approximations that, while justifiable, turn out to be unnecessary 
within our formulation of the key assumptions of spatial homogeneity and indepen- 
dence of breakpoint and gene distributions in Sections 2 and 3. 
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6.2 The Distr ibut ion P(a,m,n) 

When appropriately formulated, the probabilistic model fundamental to the Nadeau- 
Taylor theory derives from a classical occupancy problem related to statistical me- 
chanics ([1], p. 62). As such, it makes no reference to the linear nature of chromo- 
somes, though considerations of order are central to the identification of segments 
in Section 4, prior to statistical analysis. 

6.3 W h y  So Few S e g m e n t s ?  

The applications of our method in this paper  were all based on the estimate of a 
in Section 4.3. This estimate of 130, contrasting with the 140-185 segments seen 
elsewhere in the literature may be considered low for reasons definitional, method- 
ological, or biological. 

The criterion in Section 4.3 is designed to estimate the number of reciprocal 
translocations based on the total number of conserved syntenies detected on each 
chromosome, and is not influenced by how fragmented each of these syntenies may 
be. This choice follows from our goal specified in Section 4 of recovering the history 
of translocation and ignoring the effects of intrachromosomal rearrangement. It is 
not, however, a fundamental aspect of our methodology; we could have chosen a 
somewhat larger value of a in the hope that  the conseg  algorithm would iden- 
tify segments created by inversions and intrachromosomal transposition as well as 
translocation, for example, while excluding multiple counts of single segments due 
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Fig. 8. Compa.dson of relative frequencies/(r)/(l - f(1)) of segments containing r > 2 
genes with predictions of inhomogeneous genome model. Values of n and e are taken to be 
118 and 0.29, respectively, as estimated by minimizing Kolmogorov-Smirnov-type statistic. 

simply to small mapping errors. This new value of a and the corresponding nr could 
have equally well served to draw Figures 3 and 6-8, and to do the calculations in 
Sections 3.2 and 5. 
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Another explanation of the small estimate of a is the rather simple formula used 
in Section 4.3. A more detailed analysis of how segments are distributed, symmetric 
with respect to the two organisms, and using likelihood techniques, could have 
resulted in a larger value of a, though not very much so. This is a direction for 
future research. 

A final type of explanation would depend on the cellular mechanisms, as yet 
unassessed, resulting in the fixation of a chromosomal aberration such as reciprocal 
translocation. These explanations might invoke differences in chromosome size or 
differential tendencies among chromosomes for synteny preservation, fusion, fission 
and translocation. For the time being these considerations remain purely specula- 
tive, but they have the greatest potential for revising and deepening our analysis of 
conserved segments. 

6.4 T h e  S tudy  o f  I n h o m o g e n e i t i e s  

In our study of the fit of the distribution 17, or its version conditioned on r _> 1, to 
the relative frequency f of segment sizes, the greatest  discrepancy would seem to be 
for r = 1, which is most likely a reflection of error in the identification of homologous 
genes or other experimental error in chromosome assignment. Nevertheless, when 
this source of error is removed, there is clear e~Sdence that allowing inhomogeneity 
in breakpoint and gene distributions offers a closer fit to the data. A refinement of 
our model of inhomogeneity, and associated statistical tests, are potential directions 
for combined empirical and theoretical research. 
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