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Abstract. The median genome problem reduces to a search for the ver-
tex matching in the multiple breakpoint graph (MBG) that maximizes
the number of alternating colour cycles formed with the matchings repre-
senting the given genomes. We describe a class of “adequate” subgraphs
of MBGs that allow a decomposition of an MBG into smaller, more eas-
ily solved graphs. We enumerate all of these graphs up to a certain size
and incorporate the search for them into an exhaustive algorithm for
the median problem. This enables a dramatic speedup in most randomly
generated instances with hundreds or even thousands of vertices, as long
as the ratio of genome rearrangements to genome size is not too large.

1 Introduction

The median problem underlies one approach to phylogenetics based on genomic
distance. The idea, illustrated in Figure 1, is to optimize each ancestral node
of an unrooted phylogeny in terms of its three or more immediate neighbours,
modern or ancestral, and to iterate across the tree until convergence of the
objective function (to a local optimum) at all nodes. This approach to the “small
phylogeny” problem (i.e., the graph structure of the tree is given and does not
need to be inferred, in contrast to the “big phylogeny problem”) has a decade
of history in the study of genome rearrangement [7,6,2,1], though its use in
sequence-based phylogenetics dates to the 1970s [8].

In the study of genome rearrangement, genomes are treated as signed permu-
tations on 1, . . . , n, either circular or linear, sometimes fragmented into chromo-
somes. The metric d on the set of genomes is an edit distance that counts the
minimum number of operations required to transform one genome into another.
The allowed operations may include the reversal of a contiguous chromosomal
fragment, which also switches the sign on each term in the scope of the reversal;
translocation, which involves the exchange of suffixes or prefixes of two chromo-
somes; transposition, or the excision of a contiguous chromosomal fragment and
its re-insertion elsewhere on the chromosome; and a limited number of other op-
erations. While distances involving reversals and translocations only can be cal-
culated in time linear in n [4,10], the complexity of allowing transpositions in the
distance calculation, either alone or in combination with reversals and translo-
cations, is unknown. Recently, by generalizing the operation of transposition to
that of block interchange [12], it became possible to include transpositions with
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Fig. 1. Left: unrooted phylogeny with open dots representing ancestral genomes to be
inferred. Middle: median problem with three given genomes g, h and k and median q
to be inferred. Right: decomposition of phylogeny into overlapping median problems.

reversals and translocations in genomic distance calculations, within a frame-
work known as “double cut and join” (DCJ). Moreover, the DCJ framework
allows for substantial mathematical simplification of the distance calculation.

The median problem for genomic rearrangement distances in NP-hard [3,9].
Algorithms have been developed to find exact solutions for small instances [3,6]
and there are rapid heuristics of varying degrees of efficiency and accuracy [2,1,5].
In the present paper, we explore the hypothesis that although there are no worst-
case guarantees, it is worthwhile to develop methods to rapidly detect instances
which are easily solved exactly.

Because of its simple structure, we choose to work with DCJ distance d as most
likely to yield non-trivial mathematical results. We require genomes to consist
of one or more circular chromosomes, but this is for simplicity of presentation,
and our results could fairly easily be extended to genomes with multiple linear
chromosomes. Then the median problem is to find a genome q with the smallest
total distance

∑
g∈G d(q, g), for a given set of genomes G.

The mathematical analysis of genomic distances generally invokes the break-
point graph, which we will describe in Section 2. For DCJ, we have d(g, h) = n−c,
where n is the number of genes in genomes g and h, and c is the number of cycles
in the breakpoint graph. We define adequate subgraphs of the breakpoint graph,
and key graph transformations in Section 2, and we demonstrate in Section 3
how to decompose large instances of median problems into smaller instances.
This effectively reduces the search space of the median problem and makes it
possible to design algorithms applicable to most instances of interest to biol-
ogists. In Sections 4 and 5, we sketch some of the considerations involved in
these algorithms and describe the results of simulations on various data sets.
The full development of the algorithm and its application to them are detailed
in reference [11].



Decompositions of Multiple Breakpoint Graphs and Rapid Exact Solutions 27

2 Graph and Subgraph Structures

2.1 Breakpoint Graph

We construct the breakpoint graph of two genomes as in Figure 2 by representing
each gene by an ordered pair of vertices, adding coloured edges to represent the
adjacencies between two genes, red edges for one genome and blue for the other.

In a genome, every gene has two adjacencies, one incident to each of its two
endpoints, since it appears exactly once in that genome. Then in the breakpoint
graph, every vertex is incident to one red edge and one blue one. Thus the
breakpoint graph is a 2-regular graph which automatically decomposes into a
set of alternating-colour cycles.

-6 +1 -1 +2 -2 +3 -3 +4 -4 +5 -5 +6

Fig. 2. Breakpoint graph for blue genome 1 -5 -2 3 -6 -4 (in gray) and red genome 1 2
3 4 5 6 (in black)

The edges of one colour form a perfect matching of the breakpoint graph,
which we will simply refer to as a matching, unless otherwise specified. By the
red matching, we mean the matching consisting of all the red edges.

The size for breakpoint graphs, multiple breakpoint graphs and median graphs
is defined as half the number of vertices in it, which also equals to the number
of genes in each genome and the size of each perfect matching.

2.2 Multiple Breakpoint Graph and Median Graph

The breakpoint graph extends naturally to a multiple breakpoint graph (MBG),
representing a set G of three or more genomes. The number of genomes NG ≥ 3
in G is also the edge chromatic number of the MBG. The colours assigned to
the genomes are labeled by the integers from 1 to NG . We will use B(G) or B
throughout to refer to the MBG of the genomes G.

For a given distance d, the median problem for G = {g1, . . . , gNG} is to find
a genome q which minimizes

∑NG
i=1 d(gi, q). For a candidate median genome, we

use a different colour for its matching E, namely colour 0. Adding E to the MBG
B(G) results in the median graph ME(G) = B(G) ∪ E.

The set of all possible candidate matchings is denoted by E . The set of all
possible median graphs is M(G) = {M = B(G) ∪ E : E ∈ E}.

The 0-i cycles in a median graph with matching E, numbering c(0, i) in all,
are the cycles where 0-edges and i edges alternate. Let cE(B) =

∑NG
i=1 c(0, i).

Then cmax(B) = max{cE(B) : E ∈ E} is the maximum number of cycles that
can be constructed from B.
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Minimizing the total distance in the median problem is equivalent to finding
an optimal matching E, i.e., with cE(B) = cmax(B). Let E�(B) be the set of all
optimal matchings.

2.3 MBG Subgraphs and Connecting Edges

Let V(G) and E(G) be the sets of vertices and edges of a regular graph G. A
proper subgraph H of G is one where V(H) = V(G) and E(H) = E(G) do not
both hold at the same time. An induced subgraph H of G is the subgraph which
satisfies the property that if x, y ∈ V(H) and (x, y) ∈ E(G), then (x, y) ∈ E(H).

In this paper, we will focus on the induced proper subgraphs, with an even
number of vertices, of an MBG. Half of the number of these vertices is defined
as the size of the subgraph H , denoted by m. E(H) is the set of all perfect
0-matchings E(H), the cycle number determined by H and E(H) is cE(H)(H),
and cmax(H) is the maximum number of cycles that can be constructed from
H by adding some E(H). A 0-matching E�(H) with cE�(H)(H) = cmax(H) is
called an optimal local matching, and E�(H) is the set of such matchings.

The connecting edges of a subgraph H in an MBG B(G) are the edges of
B(G) incident to H exactly once, and are denoted by K(H). The complementary
induced subgraph of H in B(G), denoted as H , is the subgraph of B(G) induced
by V(B)−V(H). Note that B(G) = H + K(H)+ H, as illustrated in Figure 3.

2.4 Crossing Edges and Decomposers

For an MBG B and a subgraph H , a potential 0-edge would be H-crossing
if it connected a vertex in V(H) to a vertex in V(H). A candidate matching
containing one or more H-crossing 0-edges is an H-crossing candidate. A MBG
subgraph H is called a decomposer if for any MBG containing it, there is an
optimal matching that is not H-crossing. It is a strong decomposer if for any
MBG containing it, all the optimal matchings are not H-crossing.

For an MBG B, the search space for an optimal matching is E , which is of
size (2n − 1)!! = (2n)!

2nn! . If B contains a (strong) decomposer H of size m, then
the search can be limited to the smaller space E(H) × E(H) = {E = EH ∪ EH :
EH ∈ E(H), EH ∈ E(H)}, which is of size (2m − 1)!! · (2n − 2m − 1)!!.

2.5 Adequate and Strongly Adequate Subgraphs

In an MBG for a set of genomes G, a connected subgraph H of size m is an
adequate subgraph if cmax(H) ≥ 1

2mNG ; it is strongly adequate if cmax(H) >
1
2mNG .

A (strongly) adequate subgraph H is simple if it does not contain another
(strongly) adequate subgraph as an induced subgraph; deleting any vertex from
H will destroy its adequacy. In addition, a simple (strong) adequate subgraph H
is minimal if we cannot even delete any edges without destroying its adequacy,
i.e., for any edge e ∈ E(H), cmax(H − e) < 1

2mNG (cmax(H − e) ≤ 1
2mNG).
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Fig. 3. MBG and median graph. Thick, gray, double and thin edges denote the edges
with colours 1, 2, 3 and 0 correspondingly. (a) An MBG based on three genomes, (1 2
3 4 5 6), (1 -5 -2 3 -6 -4) and (1 3 5 -4 6 -2). A subgraph H , the connecting edge set
K(H) and the complementary subgraph H are illustrated. (b) A median graph. The
candidate matching is divided into three 0-edge sets: E0, E1 and E2.

2.6 Edge Shrinking, Expansion and Contraction

To shrink an edge e in a graph B, delete its two end vertices and any edges
(including e) parallel to e, then for the edges incident to the deleted vertices,
replace each pair of edges of same colour by a single edge of that colour, produc-
ing a new graph B ◦ e, as illustrated by Fig 4(a)–(c). To shrink a set of edges A,
shrink the edges in A one by one in any order, producing B ◦ A.

To expand a 0-edge (a, b) in a graph B, remove that edge, add two new vertices
i and j to the graph, connect i and j by NG edges with colours ranging from 1
to NG , and add 0-edges (a, i) and (b, j), as illustrated by Fig 4(c) following the
upward arrow.
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Fig. 4. Edge shrinking, expansion and contraction in a median graph based on 3
genomes: the downward arrows in (a), (b) and (c) illustrate edge shrinking in various
situations; (c) the upward arrow illustrates an expansion of a thin edge; (d) illustrates
a contraction of a thin edge

Proposition 1. If median graph M ′ is obtained from another median graph M
by expanding some 0-edge, then they contain the same number of cycles, i.e.
c(M ′) = c(M).

To contract a 0-edge e from a graph G, delete e and merge its two end vertices,
resulting in the graph G/e, as illustrated by Fig 4(d).

3 An Adequate Subgraph Is a Decomposer

In this section, we prove our main result: every (strongly) adequate subgraph is
a (strong) decomposer. The general idea of the proof is that if H is a (strongly)
adequate subgraph of MBG B(G), for any H-crossing candidate matching E,
we can always find another candidate matching E′ that is not crossing, with
cE′(B) ≥ cE(B) (or cE′(B) > cE(B)).

We partition the 0-edges in E among three sets: E0, the set of 0-edges not
incident to H ; E1, those incident to H exactly once; and E2, those incident to H
twice. In the median graph M = B ∪E, we shrink the 0-edge set E0 and expand
each 0-edge in E2. The resultant median graph illustrated by Fig 5(a) is called
the twin median graph, denoted by

◦ •
M =

◦ •
B ∪ ◦ •

E .
If the 0-edges of a cycle in M are all in E0, then after shrinking all 0-edges in

E0, this cycle does not appear in
◦ •
M. If a cycle in M contains 0-edges in E1 or E2,

then with only part of the cycle being shrunk, this cycle does appear in
◦ •
M. Denote

cE0(B) as the number of cycles formed by B and 0-edges in E0 only. Then

Proposition 2

cE(B) = cE0(B) + c◦ •
E

(
◦ •
B ) (1)

Since E0 is not incident to the subgraph H , shrinking E0 does not affect H . So
H remains in

◦ •
M. Denote the subgraph in

◦ •
M induced by V(H) as F . If a pair

of connecting edges with colour i in M , is connected by a 0-i alternating colour
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Fig. 5. Twin median graph and symmetrical median graph. (a) The twin median graph
is obtained from the median graph in Figure 3b by shrinking the 0-edge set E0 and
expanding the 0-edge set E2. (b) is the corresponding symmetric graph, with the left
part mirror-symmetric to the right part.

path, with all 0-edges in E0, then after shrinking E0, this pair of i-edges are
merged into a new i-edge e, with both ends incident to V(H). Edges like e are
contained in F but not in H . Thus

Proposition 3. Suppose
◦ •
B is a twin MBG constructed from B based on a sub-

graph H of size m, and F is the subgraph in
◦ •
B induced by V(H). Then F is of

size m and F ⊇ H. If H is a (strongly) adequate subgraph, then so is F .

Suppose the number of connecting edges in K(F ) of the twin MBG
◦ •
B is 2k.

The 0-edges in
◦ •
M denoted by

◦ •
E are either from E1 or the new added ones when

expanding E2. All of them are incident to F exactly once, so each 0-edge in
◦ •
E

is F -crossing. Then F and F must be of the same size.
The 0-edges in

◦ •
E can be viewed as a mapping from the vertex set V(F ) to

V(F ). If under this mapping, F is isomorphic to F , as illustrated by Fig 5(b)
then we call the twin median graph a symmetrical median graph, and we denote
it by

◦ ◦
M.

In any twin median graph, the size of an alternating colour cycle is at least 1,
which is only possible when a 0-edge is parallel to a connecting edge. All other
cycles have minimum size 2. We have

Proposition 4. If in a twin median graph
◦ •
M, any cycle containing a connecting

edge is of size 1 and any other cycle is of size 2, then
◦ •
M contains the largest

possible number of cycles among all twin median graphs formed from
◦ •
B . The

maximum cycle number is mNG + k. This can be achieved only when
◦ •
M is a

symmetrical median graph
◦ ◦
M.

Proof. Since there are 2k connecting edges, the number of cycles of size 1 must
be 2k. Then the number of remaining non-0 edges is 2mNG − 2k. Hence there
are mNG − k cycles of size 2. The maximum total number of cycles is mNG + k.
Because of the symmetry of

◦ ◦
M, the other cycles can only be of size 2. Hence

◦ ◦
M

is the only twin median graph containing the maximum number of cycles. �	
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Fig. 6. The contracted twin graph (a) and contracted symmetric graph (b). The con-
tracted graphs are generated from a twin median graph by contracting 0-edges. Dashed
edges are from the complementary subgraphs and the half-solid-half-dashed ones are
the connecting edges.

Next we investigate the difference between a twin median graph
◦ •
M and a sym-

metric median graph
◦ ◦
M , in terms of the number of DCJ operations needed to

transform one into another.

Lemma 1. If
◦ •
M is a twin median graph and

◦ ◦
M is the symmetric median graph,

then we can transform one into the other by exactly mNG + k − c(
◦ •
M) DCJ

operations on non 0-edges.

Proof. We construct the contracted graph, illustrated in Figure 6, by contracting
0-edges of a median graph

◦ •
M , where edges in F are represented by dashed lines

and the connecting edges are represented by half-dashed, half-solid lines with the
solid end incident to F and the dashed end incident to F . For conciseness, when
we say solid edges (dashed edges), we mean the solid (dashed) edges contained
by F (F ) or the solid (dashed) ends of connecting edges. The contracted graph
for

◦ •
M is denoted by

◦•
M and the contracted graph for

◦ ◦
M is denoted by

◦◦
M.

Comparing the median graph
◦ •
M and the contracted graph

◦•
M, it easy to see

that each vertex in
◦•
M has degree 2NG , incident to NG solid edges and NG dashed

edges. The 0-i alternating colour cycle in
◦ •
M becomes the alternating pattern

(solid/dashed) cycle with colour i. The number of alternating pattern cycles is
equal to the number of alternating colour cycles. Thus there are c(

◦ •
M) pattern

alternating cycles in
◦ •
M and mNG + k cycles in

◦◦
M.

To transform
◦•
M to

◦◦
M, we can show that there always exists a DCJ operation

on two dashed edges with the same colour that increases the cycle number by
one. When a connecting edge does not form a loop, apply a DCJ operation to
loop it. Then arbitrarily select a solid edge from a cycle with size more than 2,
apply a DCJ operation to make a dashed edge parallel to it. Thus with a number
mNG + k − c(

◦ •
M) DCJ operations, we can transform

◦ •
M to

◦ ◦
M or vice versa. �	

Proposition 5. An arbitrary DCJ operation on non-0 edges in a median graph
changes the cycle number by 1, 0, or -1.
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Proof. If the two edges belong to one cycle, it will either split into two cycles or
remain as a single cycle. If the two edges belong to two cycles, then they will be
joined into one cycle. �	

Theorem 1. If H is a (strongly) adequate subgraph of MBG B and E is a H-
crossing candidate matching, then there is a candidate matching E′ which is not
H-crossing, with cE′(B) ≥ cE(B) (or cE′(B) > cE(B)).

Proof. 1. From the median graph M = B ∪ E, construct the twin median
graph

◦ •
M and twin MBG

◦ •
B by shrinking 0-edges not incident to H (E0)

and expanding 0-edges incident to H twice (E2). Denote the subgraph of
◦ •
M

induced by V(H) as F . Then cE(B) = cE0(B) + c◦ •
E

(
◦ •
B ).

2. Construct the symmetrical median graph
◦ ◦
M with F = F and F also a

(strongly) adequate subgraph.
3. Since F is a (strongly) adequate subgraph, there exists a 0-matching D of

F satisfying cD(F ) ≥ 1
2mNG (or cD(F ) > 1

2mNG).
4. Replace the 0-matching in

◦ ◦
M by two copies of D, one on F and one on F .

Denote the 0-matching as 2D and denote the resultant median graph as
◦ ◦
B ∪ 2D, with c2D(

◦ ◦
B ) ≥ mNG (or > mNG).

5. Transform
◦ ◦
B to

◦ •
B by mNG + k − c(

◦ •
M) DCJ operations on F in

◦ ◦
B . So

c2D(
◦ •
B ) ≥ c◦ •

E
(

◦ •
B ) (or c2D(

◦ •
B ) > c◦ •

E
(

◦ •
B )).

6. Shrink the newly added sets of NG parallel edges in
◦ •
B and reverse the shrink-

ing operations on E0 in step 1, to recover the MBG B. Then the 0-matching
2D becomes the candidate matching E′ and the new median graph becomes
M ′ = B ∪ E′. Then cE′(B) = c2D

◦ •
B + cE0(B). Thus cE′(B) ≥ cE(B) (or

cE′(B) > cE(B)). �	

Theorem 2. Any adequate subgraph is a decomposer. A strongly adequate sub-
graph is a strong decomposer.

Proof. For an adequate subgraph there must be a optimal matching that is not
crossing. Otherwise by Theorem 1, from the optimal crossing matching, we can
construct a candidate matching that is not crossing and has at least as many
cycles. Thus the adequate subgraph is a decomposer.

For a strongly adequate subgraph, the non-crossing candidate matchings are
always better than the corresponding crossing candidate matchings. Then the
optimal matchings cannot be crossing matchings. The strongly adequate sub-
graph is thus a strong decomposer. �	

4 Median Calculation Incorporating MBG Decomposition

As adequate subgraphs are the key to decompose the median problems, we need
to inventory them before making use of them. It turns out that it is most useful
to limit this project to simple adequate graphs. Non-simple adequate graphs are
both harder to enumerate and harder to use, and are likely to have simple ones



34 A.W. Xu and D. Sankoff

Fig. 7. Simple adequate subgraphs of size 1, 2 and 4 for MBGs on three genomes. See
reference [11] for how they were identified.

embedded in them, which serve the same general purpose [11]. By exhaustive
search, we have found all simple adequate graphs of size < 6; these are depicted
in Figure 7. Though we have some of size 6, it would be a massive undertaking
to compile the complete set with current methods.

Our basic algorithm for solving the median problem is a branch and bound,
where edges of colour 0 are added at each step; we omit the details of proce-
dures we use to increase the effectiveness of the bounds. To make use of the
adequate subgraph theory we have developed, at each step we search for such
an inventoried subgraph before adding edges, and if one is found, we carry out
a decomposition and then solve the resulting smaller problem(s) [11].

Table 1. The number of runs, out of ten, where the median was found in less than 10
minutes on a MacBook, 2.16GHz, on one CPU

ρ/n n 10 20 30 40 50 60 80 100 200 300 500 1000 2000 5000
0.1 10 10 10 10 10 10 10 10 10 10 10 10 10 10
0.2 10 10 10 10 10 10 10 10 10 10 10 10 10 10
0.3 10 10 10 10 10 10 10 10 10 10 10 10 1
0.4 10 10 10 10 10 10 10 10 0 0
0.5 10 10 10 10 10 10 4 0
0.6 10 10 10 10 9 6
0.7 10 10 10 10 6
0.8 10 10 10 10 6
0.9 10 10 10 10 4
1.0 10 10 10 8 2
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Table 2. Speedup due to discovery of larger adequate subgraphs (AS2, AS4). Three
genomes are generated from the identity genome with n = 100 by 40 random reversals.
Time is measured in seconds. Runs were halted after 10 hours. AS1, AS2, AS4, AS0 are
the numbers of edges in the solution median constructed consequent to the detection
of adequate subgraphs of sizes 1, 2, 4 and at steps where no adequate subgraphs were
found, respectively.

speedup run time number of edges
run factor with AS1,2,4 with AS1 AS1 AS2 AS4 AS0
1 41,407 4.5 × 10−2 1.9 × 103 53 39 8 0
2 85,702 3.0 × 10−2 2.9 × 103 53 34 12 1
3 2,542 5.4 × 100 1.4 × 104 56 26 16 2
4 16,588 3.9 × 10−2 6.5 × 102 58 42 0 0
5 > 106 5.9 × 102 stopped 52 41 4 3
6 199,076 6.0 × 10−3 1.2 × 103 56 44 0 0
7 6,991 2.9 × 10−1 2.1 × 103 54 33 12 1
8 > 106 4.2 × 101 stopped 57 38 0 5
9 1,734 8.7 × 100 1.5 × 104 65 22 8 5
10 855 2.1 × 100 1.8 × 103 52 38 8 2

5 Experimental Results

To see how useful our method is on a range of genomes, we undertook experi-
ments on sets of three random genomes. Our JAVA program included a search
for adequate subgraphs followed by decomposition at each step of a branch and
bound algorithm to find the maximum number of cycles. We varied the parame-
ters n and π = ρ/n, where ρ was the number of random reversals applied to the
ancestor I = 1, . . . , n independently to derive three different genomes.

5.1 The Effects of n and π = ρ/n on the Proportion of Rapidly
Solvable Instances

Table 1 shows that relatively large instances can be solved if ρ/n remains at 0.3
or less. It also shows that for small n, the median is easy to find even if ρ/n is
large enough to effectively scramble the genomes.

5.2 The Effect of Adequate Subgraph Discovery on Speed-Up

Table 2 shows how the occurrence of larger adequate subgraphs (AS2 and AS4)
can dramatically speed up the solution to the median problem, generally from
more than a half an hour to a fraction of a second.

5.3 Time to Solution

Our results in Section 5.1 suggest a rather abrupt cut-off in performance as n or
ρ/n become large. We explore this in more detail by focusing on the particular
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Fig. 8. Cumulative proportion of instances solved, by run time. n = 1000, ρ/n = .31.
More than half are solved in less than 2 minutes; almost half take more than 20 minutes.

parameter values n = 1000 and ρ/n = .31. Figure 8 shows how the instances
are divided into a rapidly solvable fraction and a relatively intractable fraction,
with very few cases in between.

6 Conclusion

In this paper we have demonstrated the potential of adequate subgraphs for
greatly speeding up the solution of realistic instances of the median problem.
Many improvements seem possible, but questions remain. If we could inven-
tory non-simple adequate graphs, or all simple adequate graphs of size 6 or
more, could we achieve significant improvement in running time? It may well be
that the computational costs of identifying larger adequate graphs within MBGs
would nullify any gains due to the additional decompositions they provided.
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