




 
Fig. S22. GEvo plot for Vitis chr16. CoGe website link: 
https://genomevolution.org/coge//GEvo.pl?prog=blastz;iw=1000;fh=10;padding=1;hsp_top=1;nt=0;cbc=0;spike_len=15;ca=1;ski
p_feat_overlap=1;skip_hsp_overlap=1;hs=0;bzW=8;bzK=3000;bzO=400;bzE=30;accn1=PAC%3A17842842;fid1=391309733;d
sid1=80882;dsgid1=19990;chr1=16;dr1up=381041;dr1down=455942;ref1=1;mask1=non-
cds;accn2=unitig_0.g2387.t1;fid2=826717414;dsid2=98983;dsgid2=28800;chr2=unitig_0;dr2up=370000;dr2down=370000;ref2
=0;mask2=non-
cds;accn3=unitig_748.g7284.t1;fid3=826761164;dsid3=98983;dsgid3=28800;chr3=unitig_748;dr3up=50000;dr3down=50000;re
f3=0;mask3=non-
cds;accn4=unitig_92.g28244.t1;fid4=826775990;dsid4=98983;dsgid4=28800;chr4=unitig_92;dr4up=20000;dr4down=20000;ref
4=0;mask4=non-cds;accn5=unitig_52.g17673.t1;fid5=826744210;dsid5=98983;dsgid5=28800;chr5=unitig_52;dr5up=-
54522;dr5down=110000;ref5=0;mask5=non-
cds;accn6=unitig_37.g11990.t1;fid6=826736442;dsid6=98983;dsgid6=28800;chr6=unitig_37;dr6up=20000;dr6down=20000;rev
6=1;ref6=0;mask6=non-
cds;accn7=unitig_747.g21742.t1;fid7=826759988;dsid7=98983;dsgid7=28800;chr7=unitig_747;dr7up=34147;dr7down=34737;r
ev7=1;ref7=0;mask7=non-
cds;accn8=unitig_578.g16637.t1;fid8=826747360;dsid8=98983;dsgid8=28800;chr8=unitig_578;dr8up=110000;dr8down=11000
0;rev8=1;ref8=0;mask8=non-
cds;accn9=unitig_90.g27517.t1;fid9=826775418;dsid9=98983;dsgid9=28800;chr9=unitig_90;dr9up=50000;dr9down=12610;ref
9=0;mask9=non-
cds;accn10=unitig_64.g29780.t1;fid10=826751472;dsid10=98983;dsgid10=28800;chr10=unitig_64;dr10up=20000;dr10down=2
0000;ref10=0;mask10=non-
cds;accn11=unitig_748.g7088.t1;fid11=826760818;dsid11=98983;dsgid11=28800;chr11=unitig_748;dr11up=270000;dr11down
=270000;rev11=1;ref11=0;mask11=non-cds;num_seqs=11;hsp_overlap_limit=0;hsp_size_limit=0 
 
 



 
Fig. S23. GEvo plot for Vitis chr18. CoGe website link: 
https://genomevolution.org/coge//GEvo.pl?prog=blastz;iw=1000;fh=10;padding=1;hsp_top=1;nt=0;cbc=0;spike_len=15;ca=1;ski
p_feat_overlap=1;skip_hsp_overlap=1;hs=0;bzW=8;bzK=3000;bzO=400;bzE=30;accn1=PAC%3A17821841;fid1=391316180;d
sid1=80882;dsgid1=19990;chr1=18;dr1up=486751;dr1down=576416;ref1=1;mask1=non-
cds;accn2=unitig_8.g5035.t1;fid2=826770172;dsid2=98983;dsgid2=28800;chr2=unitig_8;dr2up=48676;dr2down=60088;rev2=1
;ref2=0;mask2=non-
cds;accn3=unitig_578.g16542.t1;fid3=826747186;dsid3=98983;dsgid3=28800;chr3=unitig_578;dr3up=54524;dr3down=46945;r
ev3=1;ref3=0;mask3=non-
cds;accn4=unitig_21.g20733.t1;fid4=826723670;dsid4=98983;dsgid4=28800;chr4=unitig_21;dr4up=40000;dr4down=40000;ref
4=0;mask4=non-
cds;accn5=unitig_744.g24224.t1;fid5=826757082;dsid5=98983;dsgid5=28800;chr5=unitig_744;dr5up=30838;dr5down=160000;
ref5=0;mask5=non-
cds;accn6=unitig_749.g13674.t1;fid6=826764462;dsid6=98983;dsgid6=28800;chr6=unitig_749;dr6up=14553;dr6down=60000;r
ef6=0;mask6=non-
cds;accn7=unitig_21.g20657.t1;fid7=826723530;dsid7=98983;dsgid7=28800;chr7=unitig_21;dr7up=130000;dr7down=-
28989;ref7=0;mask7=non-
cds;accn8=unitig_46.g17916.t1;fid8=826740322;dsid8=98983;dsgid8=28800;chr8=unitig_46;dr8up=110000;dr8down=45200;re
v8=1;ref8=0;mask8=non-
cds;accn9=unitig_19.g30023.t1;fid9=826722082;dsid9=98983;dsgid9=28800;chr9=unitig_19;dr9up=30000;dr9down=23295;rev
9=1;ref9=0;mask9=non-cds;num_seqs=9;hsp_overlap_limit=0;hsp_size_limit=0 
 
5. Gene Ontology Enrichment Analyses  
We obtained the generic gene ontology (GO) term annotations for Arabidopsis genes from TAIR and 
functionally annotated the RepBase-filtered U. gibba gene models by assigning the GO terms from their 
associated Arabidopsis gene annotation (see section 2.4, above). We then carried out GO term enrichment 
analyses of subsets of foreground genes versus all annotatable genes in the U. gibba genome as 



background using Fisher's exact test in GOATOOLS (https://github.com/tanghaibao/goatools) to discover 
whether subsets of genes relate to specific biological functions or metabolic pathways. The U. gibba 
whole-genome background was custom-generated as the set of U. gibba genes annotatable against 
Arabidopsis genes at E-value cutoff of 1E-05, accepting the topmost hit as the match. 
 

5.1. GO Enrichment Analysis of Syntenic Genes in U. gibba and Arabidopsis 
To investigate GO enrichment among syntenic gene duplicates descending from U. gibba lineage-specific 
WGDs, a self-to-self SynMap was generated within CoGe using the QUOTA-ALIGN algorithm (73) with 
default parameters. Syntenic gene pairs was then downloaded from CoGe and used as the foreground 
subset in the GO enrichment analysis. As shown in Dataset S5, the topmost significantly enriched terms 
(Bonferroni-corrected p-values < 0.05) were mostly transcriptional regulatory functions. For comparison, 
the same pipeline was carried out on internally syntenic Arabidopsis genes descending from its own 2 
lineage-specific WGDs, from which highly similar results were obtained (Dataset S6). The Arabidopsis 
background was all genes in the genome. 
 

5.2. GO Enrichment Analysis of Tandem Duplicates in U. gibba and Arabidopsis 
The blast_to_raw script in the QUOTA-ALIGN package (https://github.com/tanghaibao/quota-
alignment), incorporated in CoGe’s SynMap application, was used to filter out tandem duplicates before 
synteny plotting as in section 5.1. These genes calculated to be tandem duplicates in U. gibba were 
downloaded from a CoGe SynMap results link and used as a foreground subset for GO enrichment 
analyses. In contrast to functional enrichments of syntenic genes, the topmost significantly enriched terms 
for tandem duplicates were secondary metabolic functions, including specific functions that could be 
anticipated for a carnivorous plant (Dataset S7). Genes with significantly enriched GO terms assigned to 
them and their annotations are listed in Dataset S8. Although the specifically enriched terms were 
different for Arabidopsis tandem duplicates, they are also related mostly to secondary metabolic activities 
(Dataset S9). The Arabidopsis background used was all genes in its genome. 

6. Molecular Evolution Analyses of Tandem Duplicated Genes 

6.1. Cysteine Protease Genes 
Cysteine protease genes identified within the collection of tandem duplicates derived in section 5.2 were 
used as queries for a NCBI local tblastx against V. vinifera (id 19990), Arabidopsis Col-0 (id 24424), S. 
lycopersicum (id 24769), and U. gibba (PacBio v1.1; id 28048) coding sequence databases downloaded 
from CoGe. The Dionaea muscipula cysteine protease (GenBank Accession KP663370) was also 
included in the dataset. Gene model repredictions were conducted using default settings of AUGUSTUS 
(21) with the genomic sequence of the previously predicted U. gibba gene models, plus 500-1000 bp of 
upstream and downstream genomic sequence. Two tandem duplicates (g1 and g2) were repredicted at 
locus utg699.g19345. Multiple sequence alignments were performed for CDS sequences using MAFFT 
E-INS-i (74). Regions corresponding to the variable signal peptide and propeptide were removed prior to 
phylogenetic analysis. Alignments were translated prior to phylogenetic analyses. Maximum-likelihood 
(ML) searches were used to reconstruct the cysteine protease phylogeny using RAxML v8.2.4 (75) on the 
CIPRES Science Gateway (http://www.phylo.org/index.php/) under the WAG+G model of evolution, as 
determined by the Akaike and Bayesian Information Criterion (AIC/BIC) in ProtTest v3.2 (76). Searches 
for the phylogenetic reconstruction with the highest likelihood score were performed simultaneously with 
rapid bootstrapping, allowing RAxML to automatically halt the analysis (at 552 bootstrap replicates). The 
resulting phylogeny was visualized using FigTree v1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/). The 
multiple sequence alignment and the resulting phylogeny used for subsequent molecular evolutionary 
analyses are provided in Dataset S11. 
 
We estimated ω (dN/dS) values for the cysteine protease CDS alignment and RAxML phylogeny using 
the codeml part of the PAML v4.4 package (77). Gaps in the alignment were excluded by PAML. Two 



types of models were implemented: “branch-specific” (ω ratio estimated for each branch in the tree (78)) 
and “branch-site” models (ω ratio varies in selected branches and across codons (79)). 
 
Comparisons of two nested models were performed using a Likelihood Ratio Test (LRT) to test for the 
following: asymmetric sequence evolution (one-ratio model 0 (ω0 = p1) versus two-ratio model 2 (ω0, 
ω1)), divergent selection (model 3 (discrete) versus clade model D (K = 3)), and positive selection (model 
A null (ω2 = 1) versus model A (0 < ω0 < 1). The chi square test was conducted using the log likelihood 
results of each branch and node of the phylogeny (Dataset S10; Cysteine Protease PAML Branches and 
Cysteine Protease PAML Nodes, Sheets 1 and 2). Sites listed as under positive selection in Dataset S10 
correspond to amino acid residues in the multiple sequence alignment (Datasets S11-13) when gaps were 
removed by PAML. For subsequent homology modeling analyses of U. gibba cysteine protease, we 
matched sites identified by PAML as under positive selection in the un-gapped alignment to the original 
sites within contigs part of the alignment containing gaps (Datasets S10 and S11). 
 

6.1.1. Cysteine Protease Homology Modeling 
The protein structural model for the unitig699.g19348 catalytic domain was computed using the SWISS-
MODEL server homology modeling pipeline (80) using PROMOD-II (81) and MODELLER (82). A 
crystal structure of a cysteine protease from Dionaea muscipula (PDB ID: 5a24) was identified as the top-
ranking template in covalent complex with inhibitor E-64 (83). The program MacPyMOL v1.3 
(Schrödinger LLC) was used to thread the 3D model of unitig_699.g19348 to 5a24 associated with E-64. 
Sites identified as evolving under positive selection pressure by the codeml branch-site model were 
mapped to PDB coordinates to detect substrate interacting regions and amino acids lining the substrate-
binding cleft. Three (E24, V69, S160) of the unitig699.g19348 amino acid sites under positive selection 
(BEB confidence > 0.82, Bonferroni corrected p < 0.0015) are within five amino acids of the D. 
muscipula functional residues and line the substrate-binding cleft in the model (Dataset S10; Fig 3B and 
C in main text).  
 

6.2. KCS6-like Genes 
KCS6-like genes identified in the tandem duplicate analysis were used as a queries for NCBI local 
TBLASTX runs against V. vinifera (id 19990), Arabidopsis Col-0 (id 24424), S. lycopersicum (id 24769), 
and U. gibba (PacBio v1.1; id 28048) coding sequence databases downloaded from CoGe. Gene model 
reprediction was conducted as in section 6.1. Translated hits from the BLAST search were used to create 
an alignment in SeaView (84) using MUSCLE. Poorly aligned sequences were removed, the sequences 
were aligned again, and then the alignment was trimmed using Gblocks (85), with stringency parameters 
to allow smaller blocks, gap positions within the final blocks, and less strict flanking positions. 
Phylogenetic analysis was performed on back-translated nucleotide sequences using PhyML under default 
parameters in SeaView. As in section 6.1, ω values were estimated using the codeml program part of the 
PAML v4.4 package. The chi square test was conducted using the log-likelihood results of each branch 
and node of the phylogeny (Dataset S10; KCS PAML Branches and KCS PAML Nodes, Sheets 3 and 4). 
The multiple sequence alignment and resulting phylogeny for PAML analysis are available in Dataset 
S12. 
 

6.3. SVP-like Genes 
The SVP-like genes of Arabidopsis, tomato and grape were acquired from an ongoing MADS-box gene 
family analysis of 7 angiosperms being conducted by coauthors T.-H.C. and V.A.A. U. gibba SVP-like 
genes were identified by using the Arabidopsis and tomato SVP-like genes downloaded from TAIR 
(www.arabidopsis.org) to search against the U. gibba whole genome coding sequence dataset (PacBio 
v1.1; id 28048) by CoGeBlast with the TBLASTX algorithm with an E-value cutoff of 1E-10. Gene 
models were repredicted on the GeneWise website (86) for previously poorly predicted gene models. 
Genomic sequences of the target genes were acquired from CoGe and 5000 base pairs both upstream and 
downstream were added. Protein sequences serving as templates were selected based on the gene 



subfamily phylogeny. Default parameters were applied to the gene model reprediction with the modeled 
split site setting. All SVP-like genes from four species were aligned using MUSCLE, and non-informative 
regions were removed using Gblocks (85), with stringency parameters to allow smaller blocks, gap 
positions within the final blocks, and less strict flanking positions. The phylogenetic analysis was 
performed on back-translated nucleotide sequences using PhyML under default parameters in SeaView 
(84). As in 6.1, ω values were estimated using the codeml part of the PAML v4.4 package. The chi square 
test was conducted using the log-likelihood results of each branch and node of the phylogeny (Dataset 
S10; SVP PAML Branches and SVP PAML Nodes, Sheets 5 and 6). The multiple sequence alignment 
and resulting phylogeny for PAML analysis are available in Dataset S13. 
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