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Preface

The 10th edition of the International Conference on Computational Advances in Bio
and medical Sciences (ICCABS 2020) was held in a virtual format during December
10–12, 2020. ICCABS has the goal of bringing together researchers, scientists, and
students from academia, laboratories, and industry to discuss recent advances on
computational techniques and applications in the areas of biology, medicine, and drug
discovery.

There were 11 extended abstracts submitted in response to the ICCABS 2020 call
for papers. Following a rigorous review process in which each submission was
reviewed by at least two Program Committee members, the Program Committee
decided to accept six extended abstracts for oral presentation and publication in the
post-proceedings volume. The technical program of ICCABS 2020 included 15 invited
talks presented at the 10th Workshop on Computational Advances for Next Generation
Sequencing (CANGS 2020) and 15 invited talks presented at the 3rd Workshop on
Computational Advances for Single-Cell Omics Data Analysis (CASCODA 2020).
Workshop speakers were invited to submit extended abstracts and, following the same
review process used for the main conference, five additional extended abstracts were
selected for publication in the post-proceedings volume. All extended abstracts
included in the volume have been revised to address reviewers' comments.

The technical program of ICCABS 2020 also featured keynote talks by three dis-
tinguished speakers: Prof. Leslie M. Loew from the University of Connecticut Health
Center, USA, gave a talk on “The Virtual Cell Project,” Prof. May Dongmei Wang
from the Georgia Institute of Technology and Emory University, USA, gave a talk on
“Translating AI for Biomedicine and Healthcare: Challenges and Opportunities,” and
Prof. Amarda Shehu from George Mason University, USA, gave a talk on “Great
Disruptions and Expectations: A Perspective in Protein Modeling Research.” We
would like to thank all keynote speakers and authors for presenting their work at the
conference. We would also like to thank the Program Committee members and external
reviewers for volunteering their time to review and discuss the submissions. Last but
not least, we would like to extend special thanks to the Steering Committee members
for their continued leadership, and to the finance, local arrangements, publicity, and
publication chairs for their hard work in making ICCABS 2020 a successful event
despite the ongoing COVID-19 pandemic.

May 2021 Sumit Kumar Jha
Ion Măndoiu

Sanguthevar Rajasekaran
Pavel Skums

Alex Zelikovsky
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DNA Read Feature Importance Using
Machine Learning for Read Alignment

Categories

Jacob S. Porter(B)

Biocomplexity Institute and Initiative, University of Virginia,
Charlottesville, VA, USA
jsporter@virginia.edu

Abstract. An empirical understanding of how DNA read features affect
read alignment quality categories is useful in designing better read map-
ping and alignment software, read trimmers, and sequence masks. Many
programs appear to use arbitrarily chosen features that are putatively
relevant to DNA alignment quality. Machine learning gives a ready way to
empirically assess a variety of features and rank them according to their
importance. Sequence complexity features such as run length distribu-
tion, DUST, and entropy, and quality measures from the DNA read data
were used to predict read alignment quality categories on Ion Torrent
and Illumina data sets using both bisulfite-treated and untreated short
DNA reads. Run length mean and variance did as well or better than the
DUST score and entropy, even though several programs use the DUST
score and entropy. Sequence compression features performed poorly. Pre-
dictive accuracy of the models had F1-scores between 0.5–0.95 indicating
that the feature set can fairly well predict alignment categories.

Keywords: DNA alignment · Machine learning · Sequence complexity

1 Introduction

A DNA read sequencer produces DNA fragments called reads. A DNA read is
a string over the alphabet {A,C, T,G,N} corresponding to the nucleotide bases
and the N wildcard character. DNA sequence alignment programs map these
DNA reads to a reference genome. This process can be error prone as the DNA
fragments may not match a portion of the reference genome perfectly because
of natural variation and mutation or because of sequencing error [24,30].

DNA sequence mapping software that is used for regular untreated reads
includes Bowtie2 [9], BWA [11], and BFAST [6]. Mapping software for bisulfite-
treated reads must adjust for the bisulfite treatment, and such software includes
Bismark [8], BWA-Meth [17], and BisPin [22]. Bisulfite treatment is used to
search for covalent modification of cytosine in DNA. There are many more exam-
ples of alignment and mapping software.

c© Springer Nature Switzerland AG 2021
S. K. Jha et al. (Eds.): ICCABS 2020, LNBI 12686, pp. 3–14, 2021.
https://doi.org/10.1007/978-3-030-79290-9_1
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Insight into which read features are important to alignment quality cate-
gories could lead to more effective alignment software, read trimmers, masking
algorithms, and so on. I used machine learning to study which numerical fea-
tures of short DNA reads are predictive of read alignment quality categories.
These features include metrics of quality, sequence complexity, and sequence
compressibility.

2 Related Work and Motivation

I used machine learning to predict up to four read alignment categories as dis-
cussed in Sect. 3.2. Four classifiers were trained for each data set for each mapping
software.

My purpose wasn’t to use machine learning to predict alignment categories
since learning the categories can be done simply by running the alignment soft-
ware. My purpose was to explore features relevant to read alignment quality.
However, simple machine learning approaches could be used to efficiently filter
out predicted low quality reads, and so forth. This is explored in Sect. 4.4.

Assessing feature relevance allows for good decisions to be made in their use
in bioinformatics software. Trimming and masking software such as InfoTrim
and Cookiecutter use sequence complexity [21,28]. The bisulfite software Bat-
Meth has a low complexity filter using Shannon entropy [14], and BLAST uses
the DUST score for complexity masking [1,15]. The DUST score measures trinu-
cleotide frequency. The sequence complexity measures chosen for these programs
appear to be arbitrarily chosen or chosen for convenience. Compression software
has been used to determine sequence similarity [31]. A thorough evaluation of
such measures with machine learning gives an empirical rationale for the choice
of the sequence complexity measures.

Other work has used machine learning to predict DNA function from DNA
sequence identity [13] and methylation loci from DNA reads [32]. My own study
found that Shannon entropy corresponds to read alignment categories [20]. A
study found that genome complexity relates to read mapping quality [19], but
my study examines reads rather than genomes.

3 Methods

Reads were mapped using typical alignment programs, and standard machine
learning approaches were used to predict alignment categories. Custom Python
program were used for feature extraction.

3.1 Data Acquisition and Read Mapping

Six data sets of three million reads each were downloaded from the sequence read
archive (SRA) [10] at https://www.ncbi.nlm.nih.gov/sra. This data represents a
variety of bisulfite-treated and regular short DNA reads. Bisuflite- treated reads

https://www.ncbi.nlm.nih.gov/sra
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are used to search for epigenetic cytosine covalent modifications, and these reads
were included since aligning these reads can be challenging with low alignment
quality [20,29]. The data includes quality information that gives the probability
that the base was called correctly. No trimming was performed.

The data includes DNA reads generated from the Illumina platform and
the Ion Torrent platform. Ion Torrent sequencers create variable length reads
from 100–300 base pairs with greater error in homopolymer runs [23]. Illumina
technology creates reads of uniform length that can be a bit shorter than Ion
Torrent reads. Illumina technology is much more common, and it can generate
‘paired-end’ reads. Table 1 shows a summary of the data used. This data set
represents a variety of sequencing technologies and platforms, so it useful for
generalizing the results.

Table 1. Summary of the DNA read data.

SRA # Type Platform Len Species Mappers

ERR2562409 BS Illumina 90 Mouse BisPin, Bismark

SRR1104850 BS Illumina 200 Human BisPin

SRR5144899 BS Illumina 101 Human BisPin, Bismark

SRR1534392 BS Ion Torrent Varies Mouse BisPin, Tabsat

SRR2172246 Reg Illumina 76 Human BFAST, Bowtie2

ERR699568 Reg Ion Torrent Varies Mouse BFAST-Gap, TMAP

One or two read mapping and alignment programs were used to map and
align each data set to the reference genome. The GRCh38.p9 human reference
genome was used, and the GRCm38.p5 mouse reference genome was used. These
genomes can be downloaded from the NCBI (National Center for Biotechnology
Information) data store at https://www.ncbi.nlm.nih.gov/genome. Table 1 indi-
cates which read mapping programs were used with which data set. Thus, eleven
alignment files were created to do machine learning.

For bisulfite-treated Illumina reads, BisPin [22] and Bismark [8] were used
on their default settings. A primary and secondary index was used with BisPin
with rescoring turned off. Bismark is a popular read mapper for bisulfite-treated
reads, and it uses Bowtie2 [9] to do alignments. BisPin is a versatile read mapper
that has good accuracy with a variety of data [22]. Bismark did not return
any mapped reads for data set SRR1104850, so only BisPin was used there.
For Illumina regular untreated reads, BFAST (BLAT-like Fast Accurate Search
Tool) [6] and Bowtie2 [9] were used.

For bisulfite-treated Ion Torrent reads, BisPin and Tabsat were used. BisPin
was used with default settings appropriate to Ion Torrent reads as found in [22].
Tabsat [16] uses Bismark’s Perl code and the Ion Torrent read mapper TMAP
(Torrent Mapping Alignment Program https://github.com/iontorrent/TMAP).
For regular untreated Ion Torrent reads, BFAST-Gap [22] and TMAP were used.
TMAP was used with the map4 algorithm.

https://www.ncbi.nlm.nih.gov/genome
https://github.com/iontorrent/TMAP
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3.2 Feature and Class Extraction

Feature Extraction. For each DNA read, 67 numerical features were created
that comprised sequence complexity, read content, compressibility, and quality.
Reads with N ’s in them were excluded from the analysis as their presence inter-
feres with the sequence complexity measures; however, N ’s are highly relevant
to read mapper performance as an N means an ambiguous nucleotide base that
can match to any nucleotide base in the reference genome.

The sequence complexity features included run length metrics, the DUST
score, entropy, Dk(a), Rk(a), Bzip2 compressibility, and LZMA compressibility.
Compressibility is related to sequence complexity [12], and it has been used to
measure DNA sequence similarity [31].

The run length distribution was computed. A run is a substring of the DNA
string comprised of the same base. The length of the run is the number of bases
in that run. For example, “AATCCC” has a length 2 run of A’s, a length 1 run
of a T, and a length 3 run of C’s. The mean, variance, and maximum of this
distribution were used as features.

The DUST score is a sequence complexity metric based on tri-nucleotide
frequency [15]. A search of the literature did not reveal why this metric is called
DUST. Given that a is a sequence of n characters from A = {A,C, T,G}, a
triplet is a substring of length 3, and there are 64 possible triplets. The space of
triplets is R. There are n − 2 non-unique triplets in a for n > 2. If ct(a) is the
number of times triplet t occurs in a, then the DUST score is

∑
t∈R ct(a)(ct(a) − 1)/2

n − 3
.

The DUST score was normalized to be between 0 and 1 by dividing it by
(n−2)(n−3)/2

n−3 , the maximum DUST score.
Shannon entropy [26] is a sequence complexity measure common in machine

learning. If fb(a) is the frequency of character b in sequence a, then entropy is
given by

−
∑

b∈A
fb(a) log2(fb(a)).

For each b ∈ A, the base frequency fb(a) was included as a feature. This
captures sequence content related features.

The metrics Dk(a) and Rk(a) are found in [19]. The function g(x) gives the
number of times that the substring x occurs in a. Dk(a) measures the rate of
distinct substrings. Given a number k for the substring length, Dk(a) is defined
as

Dk(a) =
|{x : g(x) > 0 | |x| = k, x ∈ a}|

|a| − k + 1
.

Rk(a) measures the rate of repeats, and it is

Rk(a) =

∑
g(x)>1,|x|=k g(x)

|a| − k + 1
.
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Rk(a) and Dk(a) for k = 2, 3, 4, 5 were used. These metrics can be computed
in linear time and space using suffix arrays [19].

The Bzip2 and LZMA implementations in Python3 were used to measure
the compressibility of the DNA sequence. The number of bytes returned by the
compression algorithms was divided by the length of the uncompressed sequence
to get a compressibility metric.

Quality related features were computed from the probability measures given
with the DNA reads. This included the mean, variance, skewness, maximum,
and minimum. Since the probabilities are arranged in a sequence, the difference
between each probability was computed, and these values were averaged and
included as a feature.

The preceding features were computed for the whole read. For each third of
the DNA sequence, each of the preceding features except for Dk(a), Rk(a) and
the run length metrics, were computed and included in the feature set as well.

Label Extraction. This problem was modeled as a classification problem since
every read mapping program gives some indication of read alignment uniqueness.
For each read in an alignment file, the FLAG field of the SAM alignment record
was inspected to assign the read into one of four classes: uniquely mapped,
ambiguously mapped, unmapped, and filtered.

A read is uniquely mapped if the read mapping software reports that there is
a unique best scoring alignment for that read. A read is ambiguously mapped if
there are multiple best scoring locations. An unmapped read maps to no location,
and a filtered read has an alignment score below some program specific threshold.
Not every read mapper reports every class, so some classes were excluded for
some read mappers. One of these classes is predicted for each read.

3.3 Machine Learning Methods

Python3 with scikit-learn 0.19.1 [18] was used to do machine learning. Four
machine learning classifiers were used to assess predictive accuracy: random
assignment (Rand), random forest (RF), multi-layer perceptron neural network
(MLP), and logistic regression (LR). All features were centered and scaled using
the StandardScaler in scikit-learn for each classifier for each data set. Because
there were eleven alignment results, eleven machine learning models were created
for each classifier type and for each software for a total of 44 trained classifiers.

A random classifier (Rand) was trained. This classifier learns the proportion
of classes in the training data and simply guesses a class with probability equal to
the proportion that it learned for that class. This classifier was used to determine
if the other three classifiers were better than random guessing.

A random forest is an ensemble of decision trees. At each level in the tree, a
value for a feature is used to split the level. The leaves are labeled with classes.
An MLP is a neural network with hidden layers that linearly combine previous
layers and apply an activation function. The ReLU activation function was used.
The output of the network is a vector of probabilities for each class. Logistic
regression is a binary statistical model that uses a log-odds ratio. It was used



8 J. S. Porter

with the l2 norm. A binary problem was used for each class, and the class with
the maximum probability was reported as the predicted class [5].

Bayesian optimization with scikit-optimize was used to do hyperparame-
ter tuning with three-fold cross-validation. Bayesian optimization strategically
selects a point in the hyper-parameter space based on the performance of pre-
viously selected hyperparameters [27]. The GP-hedge acquisition function was
used, and twenty-five iterations were performed.

Random forest hyperparameters max depth and max features were opti-
mized. After some experiments, a MLP architecture with four hidden layers of
size 30, 20, 15, and 10 was chosen, and the regularization parameter alpha was
optimized. Logistic regression uses a regularization parameter that was opti-
mized.

Three-fold cross validation was used to train on 2.5 million training examples.
Approximately 500,000 reads were held-out as test data to assess model predic-
tive performance. Reads with N’s were excluded from the analysis. Cohen’s kappa
metric was used for model selection since it is supposed to perform better than
accuracy with rare classes [3]. Precision, recall, and the F1-score (the harmonic
mean of precision and recall) were computed for each class for each data set.
These were used to assess predictive performance on the held-out test data.

The source code and a results spreadsheet can be found at:
https://github.com/JacobPorter/AlignmentML.

4 Results

Models’ F1-scores ranged from 0.5–0.95. The most important features were
sequence complexity features. Quality and compression features were less impor-
tant. A read filter based on trained machine learning models found improvements
in some data.

4.1 Model Accuracy

The F1-score was computed for each class, and then each class’s F1-score was
averaged to assess model predictive performance. These results are presented
in Table 2. The mapping classes are represented as letters (U = Unique, A =
Ambig, N = Unmapped, F = Filtered). All models performed better than ran-
dom guessing. Random forest models always had the highest F1-score, and logis-
tic regression was generally the worst with the slowest training time. The MLP
had the fastest training time of the three.

Predictive accuracy was generally good for uniquely mapped reads and poor
for ambiguously mapped reads. Predictive accuracy for unmapped and filtered
reads ranged from poor to fair. The number of uniquely mapped reads could be
as high as approximately 90% of the data, and other classes could only be a few
percent of the data. This makes non-unique classes rare and prediction difficult.

https://github.com/JacobPorter/AlignmentML
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Table 2. Average class F1-score for each data set.

Data Software Classes Rand RF MLP LR

ERR2562409 Bismark UAN 0.40 0.94 0.84 0.80

ERR2562409 BisPin UANF 0.41 0.95 0.85 0.81

ERR699568 BFAST-Gap UANF 0.86 0.91 0.90 0.90

ERR699568 TMAP UA 0.87 0.92 0.91 0.91

SRR1104850 BisPin UANF 0.52 0.77 0.77 0.74

SRR1534392 BisPin UANF 0.59 0.82 0.73 0.72

SRR1534392 Tabsat UAN 0.68 0.88 0.84 0.80

SRR2172246 BFAST UANF 0.34 0.53 0.51 0.49

SRR2172246 Bowite2 UA 0.84 0.92 0.90 0.90

SRR5144899 Bismark UAN 0.65 0.81 0.80 0.79

SRR5144899 BisPin UANF 0.72 0.85 0.82 0.81

An example of precision, recall, and F1-score by class is shown in Table 3.
The ‘Read amount’ column gives the number of reads in the class. Through-
out this project, precision was generally better than recall, and Ambig was
the class that was generally the hardest to predict. This may be because the
ambiguously mapped class may have sequence complexity intermediate between
uniquely mapped and unmapped reads [20] making the difference more difficult
to distinguish. Ambiguously mapped reads may be a result of repetition in the
genome [4,25] that can’t be detected from examining the read alone.

Table 3. Precision, recall, and F1-Score by class for SRR5144899 Bismark.

Class Precision Recall F1-Score Read amount

Unique 0.851 0.974 0.909 393343

Ambig 0.657 0.133 0.221 36771

Unmap 0.775 0.473 0.587 69094

4.2 Feature Importance

Random forest feature importance was used to rank the features since the ran-
dom forest models had the best predictive performance. This gives a ranking of
features from most important to least important according to the model. This
ranking was computed for each of the eleven data sets, and the distribution of
ranks for each feature was computed. Figure 1 gives a notched box plot of these
distributions for all of the features that used the entire read. Qual features are
quality features. LZMA and bz2 are compression features, and all other features
are related to sequence complexity.



10 J. S. Porter

Fig. 1. Feature importances for all of the data. For each data set and each read mapper,
random forest feature rank importances were calculated, and the distribution of rank
for each feature was used to make the box plot. Dk(a) is referred to as dkg, and Rk(a)
is referred to as rkg.

Run length variance and run length mean were among the most important
and performed a bit better than entropy and the DUST score in some cases.
This is interesting since several programs use the DUST score, such as BLAST
[1,15], and entropy [14,21]. Run length metrics could be as good or better if
they replaced the DUST score and entropy. Character frequency features were
of good importance but not as important as the DUST score and entropy.

Dk(a) and Rk(a) performed more poorly; however, D2(a) was very important
for the data ERR2562409 as it was ranked the most important with an average
importance confidence 0.251, which was larger by 0.174 on average than the next
best feature, the largest difference of its kind. Perhaps Dk(a) is more useful for
some data sets.

Compressibility measures were the worst average performing sequence
complexity metrics. LZMA was the worst on average with a mean rank of 51.45.
However, the Bzip2 feature from the first third of the sequence had the highest
rank on the SRR1534392 data with BisPin, and LZMA in the second third of
the sequence had the highest rank for the SRR1534392 data with Tabsat.

Quality metrics were generally not as important as sequence complexity met-
rics. The quality mean was the most important of these, and quality skewness,
maximum, and minimum had the lowest importance of all features.

Since four of the six data sets were for bisulfite-sequencing reads, there could
be a bias favoring bisulfite read mapping. Thus, the same feature rank analysis
was performed with only the regular untreated data. The feature rank notched
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box plots for this data can be found in Fig. 2. The order of features is very
similar, but the DUST score does a little better, outperforming the run length
metrics. The quality mean is a bit lower in the rankings.

Fig. 2. Feature importances for the regular untreated data. Dk(a) is referred to as dkg,
and Rk(a) is referred to as rkg.

In Illumina data sets, features from the last third of the read generally had a
higher importance than features in the first or second thirds of the read sequence.
Features from the second third were generally more important than features from
the first third. This may be because there is often lower quality in the last third
of a read since Illumina sequencing technology can make more errors in later
cycles [2]. In Ion Torrent data, features from each third were generally more
evenly distributed in the top 15 most important features.

4.3 Feature Ranking Similarity Across Different Data

There is weak evidence that the feature importance ranking depends more on
the read mapper than the data set. This conclusion was drawn by looking at
Kendall’s tau coefficient for feature rankings across different data. Kendall’s tau
coefficient is used to measure how similar two ordered sequences are [7]. It ranges
from 1.0 to −1.0. A 1.0 means the sequences are identical, and a −1.0 means
that the sequences are the reverse of each other.

Kendall’s tau coefficient and p-value were computed using scipy. The feature
importance ranking for both read mappers for the same SRA number was used to
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calculate Kendall’s tau. Only ERR2562409 and ERR699568 had p-values below
0.1. All tau’s were positive. The highest was for ERR699568 at 0.308, and the
lowest was for SRR5144899 at 0.0276. Both data sets come from bisulfite-treated
Illumina reads.

The feature importance ranking for all data mapped with BisPin was com-
pared with SRR1104850 since it was mapped only with BisPin. In all cases, tau
was larger than in the previous analysis. This suggests that read mapper fea-
ture rankings correlate better than feature rankings based on the same data set
but mapped by different programs. This suggests that there is some program-
specific qualities of feature performance, and data set specific qualities are less
important.

4.4 Machine Learning Filter Proof-of-Concept

The random forest machine learning model was used as a read filter to test the
idea that these features could lead to more effective read trimmers, masking
algorithms, and so on. First, the average alignment score and the average edit
distance were calculated on additional 300k–500k reads after alignment. The
alignment score and edit distance are reported by the alignment program. Then,
reads that were marked as unmapped or filtered by the RF model were excluded,
and the averages were calculated. Table 4 summarizes the results. A positive
number represents an improvement while a negative number represents a loss.
The 200bp data set SRR1104850 had slightly worse alignments on average, but
the other data sets showed a bigger improvement. This validates that these
methods can be used as a low complexity filter to improve alignments.

Table 4. Differences in alignment score and edit distance for filtered reads.

Data Mapper Alignment diff Edit diff

SRR2172246 BFAST 626.47 5.06

SRR5144899 BisPin 2283.69 6.86

SRR1104850 BisPin −110.59 −2.03

5 Conclusions

My study showed that sequence complexity measures are important in predicting
the read mapping quality of short DNA reads. Read quality metrics were less
important. Run length mean and variance, the DUST score, and entropy were the
best performing sequence complexity measures. Bioinformatics programs may
consider using run length statistics because they were among the best features.

Without knowledge of the genome, and only knowledge of the DNA read,
machine learning models, especially random forests, were able to predict align-
ment quality with surprisingly good accuracy approaching F1-scores of 0.95. The
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features that work well on regular untreated reads tended to work well on bisul-
fite reads. This suggests that sequence complexity measures that work well in
one application will probably work well in other applications.

Future work could include training a regressor to predict the alignment score
rather than alignment categories; however not all programs (such as Bismark)
report such a score. A model with very few features that predicts the alignment
score could make a fast read filter. The effect of read trimming can be explored.
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Abstract. Current technologies allow the sequencing of microbial com-
munities directly from the environment without prior culturing. One of
the major problems when analyzing a microbial sample is to taxonom-
ically annotate its reads to identify the species it contains. Taxonomic
analysis of microbial communities requires reads clustering, a process
referred to as binning. The major problems of metagenomics reads bin-
ning are the lack of taxonomically related genomes in existing reference
databases, the uneven abundance ratio of species, and sequencing errors.

In this paper we present MetaProb 2 an unsupervised binning method
based on reads assembly and probabilistic k-mers statistics. The novelties
of MetaProb 2 are the use of minimizers to efficiently assemble reads into
unitigs and a community detection algorithm based on graph modularity
to cluster unitigs and to detect representative unitigs. The effectiveness
of MetaProb 2 is demonstrated in both simulated and synthetic datasets
in comparison with state-of-art binning tools such as MetaProb, Abun-
danceBin, Bimeta and MetaCluster.

Available at: https://github.com/frankandreace/metaprob2.

Keywords: Metagenomic · Reads binning · Reads assembly with
minimizers · k-mers statistics

1 Introduction

Metagenomics is the study of the heterogeneous microbes samples (e.g. soil,
water, human microbiome) directly extracted from the natural environment
with the primary goal of determining the taxonomical identity of the microor-
ganisms residing in the samples [22]. Shifting the focus from the individual
microbe study to a complex microbial community is a revolutionary milestone.
The classical genomic-based approaches require the prior clone and culturing
for further investigation [5,14]. However, not all bacteria can be cultured. The
advent of metagenomics allowed researchers to overcome this difficulty. Micro-
bial communities can be analyzed and compared through the detection and
quantification of the species they contain [9,17]. In this paper, we will focus
on the unsupervised detection of species in a sample without the use of reference
c© Springer Nature Switzerland AG 2021
S. K. Jha et al. (Eds.): ICCABS 2020, LNBI 12686, pp. 15–25, 2021.
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genomes. Despite extensive studies, accurate binning of reads remains challeng-
ing [3,20]. Supervised methods require to index a database of reference genomes,
e.g. the NCBI/RefSeq databases of bacterial genomes, that is used to classify
[15,16,18,21,26]. Although the reads classification is very efficient, the construc-
tion of k-mers DB usually is very demanding, requiring computing capabilities
with large amounts of RAM and disk space. Another drawback is the fact that
most bacteria found in environmental samples are unknown and cannot be cul-
tured and separated in the laboratory [4]. As a consequence, the genomes of most
microbes in an environmental sample lack a taxonomically related sequences in
existing reference databases. For these reasons, when using supervised methods
the number of unassigned reads can be very high [6,12,23].

Unsupervised methods do not require to know all the genomes in the sample,
instead they try to divide the reads into groups so that reads from the same species
are clustered together. Unsupervised classification tools, also known as binning,
are based on the observation that the k-mer distributions of the DNA fragments
from the same genome are more similar than those from different genomes. Thus,
without using any reference genome, one can determine if two fragments are from
genomes of similar species based on their k-mer distributions. The major problem
when processing metagenomic data is the fact that the proportion of species in a
sample, a.k.a. abundance rate, can vary greatly. Most of the tools can only han-
dle species with even abundance ratios, and their binning performances degrade
significantly in real situations when the abundance ratios of the species are dif-
ferent. For example, AbundanceBin [27] works well for very different abundance
ratios, but problems arise when some species have similar abundance ratios. Other
tools like BiMeta [24] and MetaCluster [25] try to group the reads into many small
clusters so that reads from minority species (with low abundance ratios) could
exist as isolated clusters. Both these methods use as means of comparison the
Euclidean distance between the vectors of k-mers counts on the clusters groups.
In MetaProb [8] reads are clustered based on a self-standardized statistic, derived
from alignment-free statistics, that is not dominated by the noise in the individual
sequences, and that can compare groups of reads with different abundance ratios.
The sensitivity can be improved by using spaced seeds instead of k-mers [7], how-
ever at the expenses of the computing resources.

In terms of precision Metaprob has shown to be one of the best perform-
ing methods, however the major bottleneck is the high memory consumption.
Another important observation is that all reads binning methods try to cluster
reads, based on overlaps and k-mers counts, but without assembling the reads.
A possible explanation is because metagenomics reads assembly is very challeng-
ing [20]. However, efficient techniques based on minimizers have been recently
devised for long reads mapping and assembly [10,11]. Recently, GraphBin [13]
has shown that assembly can be of help also for the problem of contig binning.

In this paper we present MetaProb 2, a new approach to address the prob-
lem of unsupervised metagenomics reads binning. To this purpose, MetaProb
2 assembles reads into unitigs using efficient techniques based on minimizers,
as well as probabilistic sequence signatures based on k-mers. The use of unit-
igs will also prevent the overestimation of k-mers frequency, and it does not
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requires complex counting procedures like finding sets of independent reads as
in MetaProb [8]. Another novelty of MetaProb 2 is a community detection algo-
rithm based on graph modularity [2] to cluster unitigs and to detect putative
species. This novel paradigm exploited by MetaProb 2 will further improve the
classification accuracy while reducing the computational resources (see Sect. 3).

2 Method

The study of DNA based on its k-mers is a well know technique to identify the
species in a metagenomic sample. One drawback of this approach is the large
amount of memory required to compute reads overlaps and to store all the k-
mers of the sequences. In order to solve these issues we propose MetaProb 2, a
new metagenomic reads binning algorithm based on minimizers. This algorithm
uses short paired-end reads to infer the number of species and the abundance in
the sample: short reads provide high accuracy and the paired-end information
will be useful to improve the precision and overall performances of the algorithm.

An overview of MetaProb 2 can be found in Fig. 1. The method consists of
three main steps. In the first phase, reads are grouped together based on their
overlap, using minimizers instead of k-mers. Since these reads share a common
subsequence, they are assumed to belong to the same species, and assembled
together to generate an unitig, i.e. a precise contig in which the consensus is
unambiguous. These operations are performed using two long reads de-novo
assembly algorithms, Minimap2 [11] and Miniasm [10], with some additional
modifications to comply with the short reads input.

In the second phase a unitig graph is built considering the unitigs - and their
associated reads - as nodes. From this graph it is possible to infer communities
of nodes that will likely represent unitigs of the same species. The third and
last step is the identification of putative species and the estimation of their
abundances. In this phase the representative unitigs and the unassembled reads
are clustered together based on k-mers content using a probabilistic sequence
signature derived from MetaProb [8]. Next, a more detailed description of each
of these steps is given.

2.1 Phase 1: Unitig Construction

In the first phase, reads are grouped together, based on their overlaps, and then
assembled. This operation is performed using Minimap2 [11], a long-read de novo
mapping tool that uses minimizers instead of k-mers to find shared subsequences
between reads. The use of minimizers is crucial because it stores only a fraction
of all the k-mers to perform the all vs. all comparison between the sequences,
resulting in faster computation and lower memory usage. In fact, Minimap2 has
the best performances in long reads mapping and assembling. Unlike MetaProb,
the k-mer length is set to 15 and not 32, which is a good trade-off between
resources usage, precision and number of reads grouped: higher k-mer length
means worst performances in computation time, memory usage and grouped
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Fig. 1. An overview of MetaProb 2 and the three main phases: Unitig construction,
Community detection and Species identification.

reads but it guarantees higher precision. Regarding the window size in which
minimizers are chosen we used 10, as the recommended value was 2/3 of the
k-mer length [11].

Instead of working on the groups of overlapping reads, we assemble the
sequences in each group and we consider the resulting unitig. Unitigs are precise
assemblies generated from overlapping sequences: we decided to not combine
them together into contigs to preserve the high quality of the assembled reads,
since our purpose is to have the more precise information as possible. Moreover,
the fact of considering unitigs instead of groups of reads it will naturally resolve
the problem of k-mers overcounting, and also it will avoid the complex phase of
finding sets of independent reads of MetaProb [8].

The benefit of using minimizers for short reads assembly as been recently
shown in [1]. Miniasm [10] is a tool often used together with Minimap2 that
performs assembly on long reads, it provides as output the unitig sequences along
with other information. As suggested by [1], we change the default parameters
of minimap2 and miniasm to accommodate for short reads assembly. Note that
not all the reads in the input sample will contribute to the assembly of some
unitigs, however they will be considered in the final phase.

2.2 Phase 2: Community Detection

In this phase, we use the information provided by the overlap detection together
with the paired-end structure of the reads to group unitigs that are likely to be
from the same species. To do so every unitig is assigned to a node in a graph and
if two unitigs share part of a paired-end read, their respective nodes are linked
together. Every edge is weighted with the number of shared reads between the



MetaProb 2: Improving Unsupervised Metagenomic Binning 19

unitigs. Then we use a graph clustering algorithm on the unitig graph in order
to detect the communities of unitigs. Since the dimension of the graph can be
large, this operation is performed using an heuristic method based on modularity
optimization [2]. This method is extremely efficient both in time and memory and
it can handle very large graphs. Moreover, this operation relies on the assumption
that unitigs that share many paired-end reads are likely to be originated from the
same species. It is important to notice that the communities we obtain are very
precise (data not shown), as the reads they contain are almost all from the same
species. However, a given community does not necessarily contain all the reads
from a species. It may well be that two or more communities are composed by
reads of the same species. This calls for an additional step based on the sequence
statistics, that will have the specific purpose to detect the real number of species
and their abundance in the sample.

Once the communities of unitigs have been created, we selected from every
community the nodes with the highest degrees, and these unitigs will be con-
sidered as representatives for that community in the last phase. In particular,
we chose the nodes with the highest degrees because they will somehow better
represent the community while avoiding the possibility of choosing an outlier.
In order to limit the number of representative unitigs we set a threshold on
the sum of the representative’s sequences length. The representative unitigs of
each community are used in the last phase in place of all the reads belonging to
that community, making the species identification step faster while keeping the
sequence information useful to estimate the number of species.

2.3 Phase 3: Species Identification

In the last phase, we infer the number of species and their abundance in the
sample from the sequence information, using sequence signatures [8] based on k-
mer statistics. Several alignment-free statistics have been proposed over the years
[28]. In the context of metagenomic binning, the sequence signatures proposed
by MetaProb [8] have shown very good performance and we decided to use
the sequence signature for the final phase. The input sequences for the species
identification step are the representative unitigs, that account for all the reads in
the communities, and the remaining unassembled reads. First we compute the k-
mer frequency distribution for each sequence. Then, to account for the different
probability of appearance of k-mers, the k-mers counts are standardized based on
the probability of k-mers in each sequence. Finally, in order to compare sequences
of different length, the sequence signatures are computed for each input string,
see [8] for more details. In order to detect sequences that are likely to belong to
the same species we evaluate the distance between the sequence signatures and
we apply k-means to group sequences with a similar distribution.

3 Results and Discussion

In this section we describe several experiments we performed to assess the perfor-
mances of MetaProb 2. In particular we measured both the quality of the results,
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and the computational resource usage in terms of time and space required for
the processing. All the experiments were performed on a machine with an Intel
Xeon Gold 5118 @2.30 GHz, using 32 cores and 32 GB of RAM. The input
parameters for minimap2 are “-X -sc -t31” while for miniasm are “-12 -m1 -o2
-I0.001 -s2 -i0.001 -c1 -e0 -n0 -r0.99,0.01”.

3.1 Datasets Description and Performance Evaluation Metrics

We used two different kinds of datasets: ten simulated bacterial metagenomes
generated using MetaSim [19], called S1-10, and two containing synthetic
metagenomes based on real reads, called MIX1-2. The S1-10 datasets were used
in previous studies to assess the performances of BiMeta [24] and MetaProb [8].
Mix1-2 were also used to validate MetaProb.

The S datasets contain short paired-end reads, which length is approximately
80 bp, generated according to the Illumina error profile with an error rate of 1%
using MetaSim. These have been used to verify the consistency of this method
in different scenarios: from datasets like S1-4 that have only 2 different species
and hundreds of thousands of reads with similar abundances to S9-10 that have
15 and 30 number of species, between 2.3 and 5 millions of reads and different
abundance ratios and different phylogenetic distance. The synthetic datasets,
constructed from real metagenomic data are composed of short reads Illumina
MiSeq from Kraken [26] with 10 different species and two abundance profiles:
spanning between 3.5 to 5 millions of reads they have been used to validate the
quality of the method. Table 1 shows number of reads, species and phylogenetic
distance for each dataset.

Table 1. Number of reads, species and phylogenetic distance of each sample.

Dataset No. of reads No. of species Phylogenetic distance

S1 96367 2 Species

S2 195339 2 Species

S3 338725 2 Order

S4 375302 2 Phylum

S5 325400 3 Species and Family

S6 713388 3 Phylum and Kingdom

S7 1653550 5 Genus and Order

S8 456224 5 Genus and Order

S9 2234168 15 various distances

S10 4990632 30 various distances

MIX1 4814943 10 various distances

MIX2 3574950 10 various distances
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In order to evaluate the results we used three performance evaluation metrics:
precision, recall and f-measure. Given n as number of species in a dataset and
C the number of clusters returned by the algorithm, Aij is the number of reads
from species j assigned to cluster i. We used the same definitions of precision,
recall and f-measure as in MetaProb [8] and BiMeta [24]:

Precision =
∑C

i=1 maxj Aij
∑C

i=1

∑n
j=1 Aij

(1)

Recall =

∑n
j=1 maxi Aij

∑C
i=1

∑n
j=1 Aij + #unassigned − reads

(2)

F − measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

3.2 Results

In this section we discuss the results of the comparison between MetaProb 2 and
MetaProb, alongside with other algorithms like MetaCluster 5.0.1 [25], Abun-
danceBin [27] and BiMeta [24].

Quality ofBinning. The ability of MetaProb 2 to perform metagenomic binning
is compared against the performances of its predecessor, MetaProb, along with
MetaCluster, AbundanceBin and BiMeta. Table 2 shows the overall F-measure
values of all the algorithms for each dataset (S1-10, MIX1-2). The data reported
for the competitors are also shown in Table 1 of the MetaProb paper [8].

Table 2. The comparison of f-measure for all algorithms on all datasets.

Dataset Abundance bin MetaCluster BiMeta MetaProb MetaProb 2

S1 0.683 0.672 0.978 0.992 0.994

S2 0.713 0.631 0.581 0.879 0.818

S3 0.824 0.415 0.978 0.920 0.952

S4 0.883 0.460 0.994 0.916 0.997

S5 0.552 0.643 0.690 0.828 0.880

S6 0.692 0.492 0.858 0.953 0.997

S7 0.606 0.652 0.843 0.775 0.816

S8 0.528 0.529 0.743 0.770 0.834

S9 Error 0.639 0.791 0.765 0.842

S10 0.137 0.052 0.429 0.694 0.733

MIX1 0.534 0.555 0.645 0.737 0.733

MIX2 0.490 0.630 0.667 0.670 0.800

MEAN 0.554 0.531 0.766 0.825 0.866
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Fig. 2. Precision and Recall comparison between MetaProb and MetaProb 2 on all
datasets.

We observed that increasing the dataset complexity (number of species, dif-
ferent abundances) results in a decrease of performances for every algorithm.
While AbundanceBin and MetaCluster always have lower performances than
the others, BiMeta and MetaProb have overall good performances and perform
well for specific datasets. MetaProb 2 is the best for 8 out of 12 samples, in partic-
ular, it outperforms all the other algorithms on the most difficult datasets (from
S8 to MIX2), except for MIX1, where the result is almost equal to MetaProb.
It is important to notice that the best improvements in terms of overall binning
quality (F-measure) have been made for the most complex datasets. MetaProb
2 F-measure values are between 5% and 15% better than the next best BiMeta
and MetaProb.

Precision and Recall Values for MetaProb and MetaProb 2 are shown in
details in Fig. 2. Both algorithms have balanced levels of precision and recall
in all datasets. MetaProb 2 obtains in most cases a better performance than
MetaProb in terms of both precision and recall. Results show very high values
even for the realistic datasets (MIX1 and MIX2), and consistent with the most
complex among the simulated datasets. These results show that the probabilistic
sequence signature introduced in MetaProb is a powerful tool and that the two
new phases that have been added in MetaProb 2 strengthens it even further.

Computational Resources. We compared the running time and memory
usage of MetaProb and MetaProb 2 to understand to which extent the mod-
ifications proposed in this paper affect the computational burden of the process.
As shown in Fig. 3, MetaProb 2 outperforms MetaProb, showing less computa-
tional time and significantly lower memory usage.
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Fig. 3. Time and Memory comparison between MetaProb and MetaProb 2.

Processing time was not considered an issue. As shown in the MetaProb
paper [8], it was already an order of magnitude faster than AbundanceBin and
BiMeta, while it was comparable to MetaCluster. Nevertheless, MetaProb 2 is
faster on almost every dataset: this has been possible since reads assembly using
minimizer is a fast operation, and the graph clustering algorithm scales well with
the dimension of the dataset. Moreover, these results can be further improved,
since some operations in the second phase are still done on a single core and
cannot exploit multicore processing.

On the other hand, the heavy memory usage of MetaProb was the driv-
ing factor for the development of a new approach. Even if the performances of
MetaProb are good, the amount of RAM used is higher than the other algo-
rithms. For example, both AbundanceBin and MetaCluster memory usage are
better than MetaProb, while BiMeta is in line with MetaProb.

As shown in Fig. 3, MetaProb 2 consistently uses less memory than its pre-
decessor, requiring significantly less space as the size of the dataset grows. For
example on the largest dataset with 5 million reads MetaProb requires 30.4 GB
of RAM while MetaProb 2 only 7.6 GB, with a reduction of 75%, in line with
AbundanceBin that uses 5.7 GB.

These results have been possible thanks to the use of minimizers that consid-
erably reduce the number of k-mers stored for the overlap detection. Also, the
efficient unitig graph algorithms, and the resulting smaller number of sequences
to compare, make then possible to keep the memory usage low: in fact, the
highest amount of memory usage is always registered in the first phase.

4 Conclusions and Future Work

Binning metagenomic reads remains a crucial step in metagenomic analysis. In
this work we presented MetaProb 2, an unsupervised approach for metagenomic
reads binning based on reads assembly using minimizers and on probabilistic
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k-mers statistics. We compared the binning performance over simulated and
synthetic metagenomic datasets against other state-of-art binning algorithms.
MetaProb 2 achieves good performances in terms of precision and recall, out-
performing MetaProb and the other tools. Another advantage of MetaProb 2
is the small memory requirement, especially on large dataset, with a reduction
of 75% w.r.t. to MetaProb. As future work we will expand the experimental
setup with even larger datasets, we will test other metagenomic assemblers, as
in GraphBin [13], and we plan to develop a similar paradigm for the problem of
taxonomic reads annotation.
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Abstract. Stress urinary incontinence is defined by the involuntary loss of urine
during the sneezing and coughing. The urethral smooth muscle cell contributes to
stress urinary incontinence by generating spontaneous mechanical and electrical
activities. It generates spontaneous electrical events in the terms of membrane
depolarization and action potentials. Therefore, a complete understanding of the
urethral smooth muscle cell’s spontaneous action potential biophysics will help in
identifying novel pharmacological targets for the stress urinary incontinence. The
action potential is evoked by the activation of various ion channels across the cell
membrane. This study aims in establishing a computational model of the single
urethral smooth muscle cell to simulate the action potential after incorporating
all-important ion channels. The ion channels are designed with Hodgkin- Hux-
ley formalism, where the internal kinetics are expressed in terms of the ordinary
differential equations. This computational model generates experimental sponta-
neous action potential and the underlying ionic currents in urethral smooth muscle
cell successfully. In summary, this mathematical model contributes an elemental
tool to investigate the physiological ionic mechanisms underlying the spikes in
the urethral smooth muscle cell, which in turn can shed light on the genesis of
stress urinary incontinence.

Keywords: Stress urinary incontinence · Urethral smooth muscle cell · Action
potential · Ion channels · Computational modeling

1 Introduction

The International Continence Society has defined urinary incontinence (UI) as a con-
dition in which involuntary loss of urine is objectively demonstrable and is a social or
hygiene problem [1]. Among different types of UI, stress urinary incontinence (SUI) is
one, which is a common syndrome in women that is typically associated with advanced
age, obesity, diabetes mellitus, and fertility [2]. Stress urinary incontinence, defined as
a “complaint of involuntary loss of urine on effort or physical exertion or on sneezing or
coughing” by the International Continence Society [3, 4]. The smooth muscles from the
urinary bladder and urethra display spontaneous contractility patterns, which are asso-
ciated with UI and SUI. The mammalian urethra is known to exhibit spontaneous tonic
contraction activity during the urine-storage phase [5]. Although the factors regulating
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the SUI are not still precisely identified, it is also widely demonstrated that the abnormal
urethral smooth muscle (USM) cell contraction phenomena play an important role in
regulating these activities [6–8]. The isolated USM cell from various species shows slow
waves, spontaneous depolarization (SD), and spontaneous action potentials (sAPs) as
its’ intracellular electrical activity [7, 9, 10]. The sAPs trigger spontaneous contractions
by permitting extracellular calcium (Ca2+) via the voltage gated Ca2+ channels across
the membrane and releasing stored Ca2+ from the sarcoplasmic reticulum (SR) in the
intracellular compartment [5, 10, 11]. The resting membrane potential (RMP) values of
the USM cell are in the range from – 35 mV to – 45 mV [12–14]. The sAPs can be fired
spontaneously or evoked by the external stimulation [13]. The array of ion channels
located across the USM cell membrane play a crucial role in regulating both RMP and
sAP formation and therefore the overall function of the urethra [15]. Therefore, a better
understanding of the ion channel kinetics in forming the USM cell sAP would shed light
on developing improved therapies for the SUI.

The biophysical constrained computational models always provide a virtual exper-
imental set up to investigate the underlying ionic mechanisms for the cell’s electrical
activities. Over the past decades, several computational models have been developed
for the neuronal and cardiac cells to investigate individual ion channels’ contribution in
generating the action potential. However, there are a few numbers of computationalmod-
els are developed for smooth muscle electrophysiology. To address this gap, recently,
we have developed a biophysically constrained computational model for the detrusor
smooth muscle (DSM) AP by incorporating nine ion channels [16–19]. As both DSM
and USM contractions are related to UI and SUI, this paper presents the first biophys-
ically based model of USM AP which integrates some ionic currents underlying the
electrogenic processes in the urethra. This single-cell USM model can be subsequently
coupled to other active ionic currents and a syncytium model to examine hypotheses
concerning the generation of SUI.

Fig. 1. A USM cell parallel conductance model. It describes all membrane currents and
transmembrane potential.

2 Methods

The first step in developing this computational model is to form a conceptual model
expressed by themathematical equations. The classical Hodgkin-Huxley (HH) approach
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is implemented to form this conceptual model. According to the HH formalism, the cell
membrane can be interpreted into an equivalent parallel conductance circuit consisting of
membrane capacitance and several variable conductances representing all ion channels.
TheUSMcell model simulation is performed in “NEURON” [20] software environment.
The “NEURON” simulation platform is designed to investigate electrophysiological
properties in biological excitable cells at different spatiotemporal levels. For USM cell
geometry, a cylindrical morphology is considered with length and diameter of 200 μm
and 6 μm respectively. The membrane capacitance (Cm), membrane resistance (Rm),
and axial resistance (Ra) are basic electrical properties of the excitable cell membrane.
For this model, the Cm, Rm, and Ra are taken as 1μF/cm2, 138M�– cm2, and 181�-cm
respectively. Figure 1 illustrates the USM cell model as a parallel conductance model.
The membrane capacitance (Cm) is shunted by an array of ion channel conductances
gion with respective Nernst potentials Eion. The ion channels in the USM cell model
are Ca2+ activated Cl− channel (gCaCl, ECl), voltage-gated Ca2+ channel (gCaL, gCaT,
ECa), voltage-gated K+ channel (gKv, EK), Ca2+ activated K+ channel(gKca, EK), ATP-
dependent K+ channel (gKATP, EK) and leakage currents (gLeak, ELeak). The leakage
current is considered as a constant value. Applying Kirchhoff’s current law, we will get
the following differential equation describing changes in transmembrane potential Vm.
The time dependence of themembrane potential is governed by the following differential
equation

dVm

dt
= − Iion(t)

Cm
(1)

where both Vm, and I ion represent the transmembrane potential and sum of the ionic
currents across the cell membrane. The units of both Vm and I ion are in mV and pA
respectively.

dVm

dt
= − 1

Cm
(ICa + IKCa + IKv + Il) (2)

All ionic currents were modeled according to the Hodgkin-Huxley formalism, which
is expressed by the following equation.

I = gmxhy(Vm − Erev) (3)

where g is the maximum conductance, Erev is the ion’s Nernst/reversal potential, m and
h are the dimensionless activation and inactivation gating variables.

Both m and h are dependent upon membrane potential and time. First order differ-
ential equations are used to express the time dependent properties of both m and h. The
following differential equation represents the dynamics of ‘m’ variable.

dm

dt
= (m∞ − m)

τm
(4)

where m∞ is the steady-state value of the m and τm, is the time constant for reaching
the steady-state value. These are also functions of voltage and/or ionic concentrations.
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In addition, the steady-state inactivation and activation values for all ion channels
are described by the following Boltzman equation.

m∞ = 1/
1 + exp ((Vm + V 1

2
)/s) (5)

Where V1/2 is the half activation potential and S is the slope factor. For our model,
both V1/2 and S are taken from the published experimental data.

The sAPs were induced in the whole-cell model by applying an external stimulus
current as brief rectangular pulses or synaptic input.

3 Results

There is an array of ion channels discovered inUSMcell electrophysiology to regulate the
cell’s excitability. It includes T and L-type voltage-gated Ca2+ channels (ICaL and ICaT),
ATP-dependent K+ channel (IKATP), two outward rectifying voltage-gated K+ channel
(IKA and IKv), Ca2+, and voltage-dependent large-conductance K+ channel (IKCa), Ca2+

dependent Cl− channel (IClCa) and the leakage channel (ILeak). The biophysical details
of one inward current (ICaL) is presented in the following section.

L-type Calcium Current (ICaL)
Several researcher groups have elucidated the presence of two types of Ca2+ channel
(Transient and long-lasting type) in USM cell electrophysiology. However, the L-type
(Long-lasting) Ca2+ channel (ICaL) is responsible for the major inward current in USM
cells [5, 15]. It is demonstrated that ICaL is activated first between Vm ≈ −35 and −20
mV; the peak magnitude of the current-voltage (I–V) relationship curve appears at Vm
≈ 10mV. The half-activation potentials for both steady-state activation and inactivation
curve are –3.4 mV and –24.8 mV respectively. The Nerst potential ECaL is fixed at
45mV. The equations of ICaL incorporate both activation (m) and inactivation (h) gating
variables. The biophysical parameters for the ICaL are extracted from the published
experimental data in humanUSM electrophysiology [21]. Figure 2(A) shows the steady-
state activation and inactivation curve with respect to membrane potential.

The red and black solid lines represent simulated steady-state curves for inactivation
and activation parameters respectively. The superimposed filled squares and triangles
represent the experimental data [21]. The whole-cell current ICaL is simulated according
to the voltage clamp protocol for a duration of 200 ms. The holding potential is –70 mV.
Simulated tracings of ICaL are shown in Fig. 2(B).

AP Simulation
The AP can be evoked either by the external current injection via the inserted electrode
or by the induced synaptic input from the neighbor nerve. Seven numbers of ionic
conductances are incorporated into this single USM cell model. The USM cell model
successively responded to both current and synaptic input stimuli by showing all-or-none
AP firing properties.

A current input is a step input pulse with different amplitudes and durations. A
synaptic input is also mimicked by the alpha function to evoke AP in our model. The
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Fig. 2. USM ICaL model. A steady state activation and inactivation parameter curve and B shows
the current traces from the voltage clamp protocol.

Fig. 3. The simulated AP in the USM model.

voltage threshold is ≈ −35 mV. Figure 3 presents the simulated AP after inducing a
synaptic input to mimic the experimental AP in [22].

Table 1 compares simulated AP with experimental one [22] in terms of RMP, peak
amplitude, AP duration and AHP (after hyperpolarization potential).

Table 1. Comparison between simulated AP and the experimental AP [22]

RMP (mV) Peak (mV) AHP (mV) Duration (ms)

Experiment 40 47 53 38

Simulation 40 55 52 35

4 Discussion

The primary objective of this studywas to develop and validate a computational model of
a USM cellular electrophysiology. The model description integrates those ion channels
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thatwere significantly contributing to generate theUSMcellAP. The ion channel kinetics
are characterized by the Hodgkin and Huxley formalism after extracting all parameter
values from the literature on USM electrophysiology. The model has demonstrated its’
ability by simulating the experimental AP successfully.

The assumptions and simplification approaches are concerned about developing a
perfect mathematical model.

A better physiologically realistic model is always based on enough electrophysiolog-
ical data obtained from a single species. However, due to experimental setup complexity,
these data are not always available from the same species. We, therefore, made assump-
tions driven from values obtained from USM in different species (rat, human, mouse,
pig, guinea pig, and rabbit) and under various experimental conditions. Some debate also
exists with regard to the ionic conductances that are involved in the repolarizing phase.
It has been suggested that more than one K+ conductance (for example fast A-type K+

current [15] may carry a portion of the outward current. However, due to a lack of exper-
imental evidence, this model doesn’t include this channel. Another question can also be
raised towards simulating the experimental AP when the single USM cell is coupled to
the other cell.

In the present state, this model is at an elementary stage. Integration of other active
channels, Na+- Ca2+ exchanger, Ca2+ ATPase pump and sarcoplasmic reticulum Ca2+

releasing mechanism will improve this model towards a more comprehensive stage. In
addition, the expansion of this single-cell model to syncytium or network level will help
to establish a better physiologically realistic computational model for investigating the
SUI.
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Abstract. Machine learning provides a probabilistic framework for
metabolic pathway inference from genomic sequence information at dif-
ferent levels of complexity and completion. However, several challenges
including pathway features engineering, multiple mapping of enzymatic
reactions and emergent or distributed metabolism within populations or
communities of cells can limit prediction performance. In this paper, we
present triUMPF, triple non-negative matrix factorization (NMF) with
community detection for metabolic pathway inference, that combines
three stages of NMF to capture myriad relationships between enzymes
and pathways within a graph network. This is followed by community
detection to extract higher order structure based on the clustering of ver-
tices which share similar statistical properties. We evaluated triUMPF
performance using experimental datasets manifesting diverse multi-label
properties, including Tier 1 genomes from the BioCyc collection of organ-
ismal Pathway/Genome Databases and low complexity microbial com-
munities. Resulting performance metrics equaled or exceeded other pre-
diction methods on organismal genomes with improved precision on
multi-organismal datasets.

Keywords: NMF · Community detection · Metabolic pathway
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1 Introduction

Pathway reconstruction from genomic sequence information is an essential step
in describing the metabolic potential of cells at the individual, population and
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community levels of biological organization [10,15,20]. Resulting pathway rep-
resentations provide a foundation for defining regulatory processes, modeling
metabolite flux and engineering cells and cellular consortia for defined pro-
cess outcomes [9,17]. The integral nature of the pathway prediction problem
has prompted both gene-centric e.g. mapping annotated proteins onto known
pathways using a reference database based on sequence homology, and heuristic
or rule-based pathway-centric approaches including PathoLogic [14] and Min-
Path [33]. In parallel, the development of trusted sources of curated metabolic
pathway information including the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [13] and MetaCyc [4] provides training data for the design of more
flexible machine learning (ML) algorithms for pathway inference. While ML
approaches have been adopted widely in metabolomics research [3,30] they have
gained less traction when applied to predicting pathways directly from annotated
gene lists.

Dale and colleagues conducted the first in-depth exploration of ML approaches
for pathway prediction using Tier 1 (T1) organismal Pathway/Genome Databases
(PGDB) [5] from the BioCyc collection randomly divided into training and test
sets [6]. Features were developed based on rule-sets used by the PathoLogic algo-
rithm in Pathway Tools to construct PGDBs [14]. Resulting performance metrics
indicated that standard ML approaches rivaled PathoLogic performance with the
added benefit of probability scores [6]. More recently Basher and colleagues devel-
oped multi-label based on logistic regression for pathway prediction (mlLGPR),
a multi-label classification approach that uses logistic regression and feature vec-
tors inspired by the work of Dale and colleagues to predict metabolic pathways
from genomic sequence information at different levels of complexity and comple-
tion [20].

Although mlLGPR performed effectively on organismal genomes, pathway
prediction outcomes for multi-organismal datasets were less optimal due in part
to missing or noisy feature information. In an effort to solve this problem, Basher
and Hallam evaluated the use of representational learning methods to learn a
neural embedding-based low-dimensional space of metabolic features based on a
three-layered network architecture consisting of compounds, enzymes, and path-
ways [19]. Learned feature vectors improved pathway prediction performance
on organismal genomes and motivated the use of graphical models for multi-
organismal features engineering.

Here we describe triple non-negative matrix factorization (NMF) with
community detection for metabolic pathway inference (triUMPF) combining
three stages of NMF to capture relationships between enzymes and pathways
within a network [8] followed by community detection to extract higher order
network structure [7]. Non-negative matrix factorization is a data reduction and
exploration method in which the original and factorized matrices have the prop-
erty of non-negative elements with reduced ranks or features [8]. In contrast to
other dimension reduction methods, such as principal component analysis [2],
NMF both reduces the number of features and preserves information needed
to reconstruct the original data [32]. This has important implications for noise
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robust feature extraction from sparse matrices including datasets associated with
gene expression analysis and pathway prediction [32].

For pathway prediction, triUMPF uses three graphs, one representing asso-
ciations between pathways and enzymes indicated by enzyme commission (EC)
numbers [1], one representing interactions between enzymes and another rep-
resenting interactions between pathways. The two interaction graphs adopt the
subnetworks concept introduced in BiomeNet [28] and MetaNetSim [12], where a
subnetwork is a linked series of connected nodes (e.g. reactions and pathways). In
the literature, a subnetwork is commonly referred to as a community [26], which
defines a set of densely connected nodes within a subnetwork. It is important
to emphasize that unless otherwise indicated, the use of the term community
in this work refers to a subnetwork community based on statistical properties
of a network rather than a community of organisms. Community detection is
performed on both interaction graphs (pathways and enzymes) to identify sub-
networks among pathways.

We evaluated triUMPF’s prediction performance in relation to other methods
including MinPath, PathoLogic, and mlLGPR on a set of T1 PGDBs, low com-
plexity microbial communities including symbiont genomes encoding distributed
metabolic pathways for amino acid biosynthesis [22], genomes used in the Criti-
cal Assessment of Metagenome Interpretation (CAMI) initiative [27], and whole
genome shotgun sequences from the Hawaii Ocean Time Series (HOTS) [29] fol-
lowing information hierarchy-based benchmarks initially developed for mlLGPR
enabling more robust comparison between pathway prediction methods [20].

2 Method

In this section, we provide a general description of triUMPF components, pre-
sented in Fig. 1. At the very beginning, MetaCyc is applied to: i) - extract three
association matrices, indicated in step Fig. 1(a), one representing associations
between pathways and enzymes (P2E) indicated by enzyme commission (EC)
numbers [23], one representing interactions between enzymes (E2E) and another
representing interactions between pathways (P2P), and ii) - automatically gener-
ate features corresponding pathways and enzymes (or EC) from pathway2vec [19]
in Fig. 1(b). Then, triUMPF is trained in two phases: i) - decomposition of the
pathway EC association matrix in Fig. 1(c), and ii) - subnetwork or commu-
nity reconstruction while, simultaneously, learning optimal multi-label pathway
parameters in Figs. 1(d–f). Below, we discuss these two phases while the analyt-
ical expressions of triUMPF are explained in Appx. Sections A, B, and C [21].

2.1 Decomposing the Pathway EC Association Matrix

Inspired by the idea of non-negative matrix factorization (NMF), we decompose
the P2E association matrix to recover low-dimensional latent factor matrices [8].
Unlike previous application of NMF to biological data [24], triUMPF incorpo-
rates constraints into the matrix decomposition process. Formally, let M ∈ Z

t×r
≥0
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Fig. 1. A workflow diagram showing the proposed triUMPF method. Initially, tri-
UMPF takes the Pathway-EC association (P2E) information (a) to produce several
low rank matrices (c) while, simultaneously, detecting pathway and EC communities
(d) given two interaction matrices, corresponding Pathway-Pathway (P2P) and EC-
EC (E2E) (a). For both steps (c) and (d), pathway and EC features obtained from
pathway2vec package (b) are utilized. Afterwards, triUMPF iterates between updating
community parameters (d) and optimizing multi-label parameters (e) with the use of
a training data (f). Once the training is achieved the learned model (g) can be used
to predict a set of pathways (i–j) from a newly annotated genome or multi-organismal
dataset (h).
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be a non-negative matrix, where t is the number of pathways and r is the num-
ber of enzymatic reactions. Each row in M corresponds to a pathway and each
column represent an EC, such that Mi,j = 1 if an EC j is in pathway i and 0
otherwise. Given M, the standard NMF decomposes this matrix into the two
low-rank matrices, i.e. M ≈ WH�, where W ∈ R

t×k stores the latent fac-
tors for pathways while H ∈ R

r×k is latent factors associated with ECs and
k(∈ Z≥1) � t, r. However, triUMPF extends this standard NMF by leveraging
features, obtained from pathway2vec [19], encoding two interactions: i) - within
ECs or pathways and ii) - between pathways and ECs. For more details about
this step, please see Appx. Section B.1 [21].

2.2 Community Reconstruction and Multi-label Learning

The community detection problem [18,26] is the task of discovering distinct
groups of nodes that are densely connected. During this phase, triUMPF per-
forms community detection to guide the learning process for pathways using
binary P2P (A ∈ Z

t×t
≥0 ) and E2E (B ∈ Z

r×r
≥0 ) associations matrices, where each

entry in these matrices is a binary value indicating an interaction among cor-
responding entities. However, A and B capture pairwise first-order proximity
among their related entities, consequently, they are inadequate to fully charac-
terize distant relationships among pathways or ECs [26]. Therefore, triUMPF
utilizes higher-order proximity using the following formula [18]:

Aprox =
∑

i∈lp

ωiAl, Bprox =
∑

i∈le

γiBl

(1)

where Aprox and Bprox are polynomials of order lp ∈ Z>0 and le ∈ Z>0, respec-
tively, and ω ∈ R>0 and γ ∈ R>0 are weights associated to each term. Using
these higher order matrices, triUMPF applies two NMFs to recover communities
(Appx. Section B.2 [21]). Then, triUMPF uses W and H from the decomposition
phases (Sect. 2.1) and the detected communities to optimize multi-label pathway
parameters in an iterative process (Appx. Section B.3 [21]) until the maximum
number of allowed iterations is reached. At the end, the trained model can be
used to perform pathway prediction from a newly annotated genome or multi-
organismal dataset with high precision due to constraints embedded in the P2E,
P2P, and E2E associations matrices.

3 Experiments

We evaluated triUMPF performance across multiple datasets spanning the
genomic information hierarchy [20]: i) - T1 golden consisting of EcoCyc, Human-
Cyc, AraCyc, YeastCyc, LeishCyc, and TrypanoCyc; ii) - three E. coli genomes
composed of E. coli K-12 substr. MG1655 (TAX-511145), uropathogenic E. coli
str. CFT073 (TAX-199310), and enterohemorrhagic E. coli O157:H7 str. EDL933
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Table 1. Average precision of each comparing algorithm on 6 golden T1 data.

Methods Average precision score

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc

PathoLogic 0.7230 0.6695 0.7011 0.7194 0.4803 0.5480

MinPath 0.3490 0.3004 0.3806 0.2675 0.1758 0.2129

mlLGPR 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455

triUMPF 0.8662 0.6080 0.7377 0.7273 0.4161 0.4561

(TAX-155864); iii) - BioCyc (v20.5 T2 & 3) [5] composed of 9255 PGDBs (Path-
way/Genome Databases) constructed using Pathway Tools v21 [14]; iv) - sym-
bionts genomes of Moranella (GenBank NC-015735) and Tremblaya (GenBank
NC-015736) encoding distributed metabolic pathways for amino acid biosynthe-
sis [22]; v)- Critical Assessment of Metagenome Interpretation (CAMI) initiative
low complexity dataset consisting of 40 genomes [27]; and vi) - whole genome
shotgun sequences from the Hawaii Ocean Time Series (HOTS) at 25 m, 75 m,
110 m (sunlit) and 500 m (dark) ocean depth intervals [29]. General statistics
about these datasets are summarized in Appx. Table 4 [21]. For comparative
analysis, triUMPF’s performance on T1 golden datasets was compared to three
pathway prediction methods: i) - MinPath version 1.2 [33], which uses integer
programming to recover a conserved set of pathways from a list of enzymatic
reactions; ii) - PathoLogic version 21 [14], which is a symbolic approach that uses
a set of manually curated rules to predict pathways; and iii) - mlLGPR which
uses supervised multi-label classification and rich feature information to predict
pathways from a list of enzymatic reactions [20]. In addition to testing on T1
golden datasets, triUMPF performance was compared to PathoLogic on three E.
coli genomes and to PathoLogic and mlLGPR on mealybug symbionts, CAMI
low complexity, and HOTS multi-organismal datasets. The following metrics
were used to report on performance of pathway prediction algorithms includ-
ing: average precision, average recall, average F1 score (F1), and Hamming loss
as described in [20]. For experimental settings and additional tests, see Appx.
Sections D and E [21].

3.1 T1 Golden Data

As shown in Table 1, triUMPF achieved competitive performance against the
other methods in terms of average precision with optimal performance on Eco-
Cyc (0.8662). However, with respect to average F1 scores, it under-performed on
HumanCyc and AraCyc, yielding average F1 scores of 0.4703 and 0.4775, respec-
tively (Appx. Table 5 [21]). Since triUMPF was trained using BioCyc containing
less than 1460 trainable pathways in comparison to the remaining pathway pre-
diction methods, it is expected to produce a sizable set of accurate pathways
from organismal genomes.
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Fig. 2. A three way set difference analysis of pathways predicted for E. coli K-12 substr.
MG1655 (TAX-511145), E. coli str. CFT073 (TAX-199310), and E. coli O157:H7 str.
EDL933 (TAX-155864) using (a) PathoLogic (taxonomic pruning) and (b) triUMPF.

3.2 Three E. coli Data

Recall that community detection (Sect. 2.2) was used to guide the multi-label
learning process. To demonstrate the influence of communities on pathway pre-
diction, we compared pathways predicted for the T1 gold standard E. coli K-12
substr. MG1655 (TAX-511145), henceforth referred to as MG1655, using Patho-
Logic and triUMPF. Appx. Fig. 8a [21] shows the results, where both meth-
ods inferred 202 true-positive pathways (green-colored) in common out of 307
expected true-positive pathways (using EcoCyc as a common frame of refer-
ence). In addition, PathoLogic uniquely predicted 39 (magenta-colored) true-
positive pathways while triUMPF uniquely predicted 16 true-positives (purple-
colored). This difference arises from the use of taxonomic pruning in PathoLogic
which improves recovery of taxonomically constrained pathways and limits false-
positive identification. With taxonomic pruning enabled, PathoLogic inferred 79
false-positive pathways, and over 170 when pruning was disabled. In contrast
triUMPF which does not use taxonomic feature information inferred 84 false-
positive pathways (Appx. Table 6 [21]). This improvement over PathoLogic with
pruning disabled reinforces the idea that pathway communities improve preci-
sion of pathway prediction with limited impact on overall recall. Based on these
results, it is conceivable to train triUMPF on subsets of organismal genomes
resulting in more constrained pathway communities for pangenome analysis.

To further evaluate triUMPF performance on closely related organismal
genomes, we performed pathway prediction on E. coli str. CFT073 (TAX-
199310), and E. coli O157:H7 str. EDL933 (TAX-155864) and compared results
to the MG1655 reference strain [31]. Both CFT073 and EDL933 are pathogens
infecting the human urinary and gastrointestinal tracts, respectively. Previously,
Welch and colleagues described extensive genomic mosaicism between these
strains and MG1655, defining a core backbone of conserved metabolic genes
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Fig. 3. Comparative study of predicted pathways for symbiotic data between Patho-
Logic, mlLGPR, and triUMPF. The size of circles corresponds the associated coverage
information.

interspersed with genomic islands encoding common pathogenic or niche defin-
ing traits [31]. Neither CFT073 nor EDL933 genomes are represented in the
BioCyc collection of organismal pathway genome databases. A total of 335 and
319 unique pathways were predicted by PathoLogic and triUMPF, respectively.
The resulting pathway lists were used to perform a set-difference analysis with
MG1655 (Fig. 2). Both methods predicted more than 200 pathways encoded by
all three strains including core pathways like the TCA cycle (Appx. Figs. 8b and
8c [21]). CFT073 and EDL933 were predicted to share a single common path-
way (TCA cycle IV (2-oxoglutarate decarboxylase)) by triUMPF. However this
pathway variant has not been previously identified in E. coli and is likely a false-
positive prediction based on recognized taxonomic range. Both PathoLogic and
triUMPF predicted the aerobactin biosynthesis pathway involved in siderophore
production in CFT073 consistent with previous observations [31]. Similarly, four
pathways (e.g. L-isoleucine biosynthesis III and GDP-D-perosamine biosynthe-
sis) unique to EDL933 were inferred by both methods.

Given the lack of cross validation standards for CFT073 and EDL933 we were
unable to determine which method inferred fewer false-positives across the com-
plete set of predicted pathways. To constrain this problem on a subset of the data,
we applied GapMind [25] to analyze amino acid biosynthesis pathways encoded
in MG1655, CFT073 and EDL933 genomes. GapMind is a web-based applica-
tion developed for annotating amino acid biosynthesis pathways in prokaryotic
microorganisms (bacteria and archaea), where each reconstructed pathway is
supported by a confidence level. After excluding pathways that were not incor-
porated in the training set, a total of 102 pathways were identified across the
three strains encompassing 18 amino acid biosynthesis pathways and 27 path-
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Table 2. Predictive performance of mlLGPR and triUMPF on CAMI low complexity
data. For each performance metric, ‘↓’ indicates the smaller score is better while ‘↑’
indicates the higher score is better.

Metric mlLGPR triUMPF

Hamming loss (↓) 0.0975 0.0436

Average precision score (↑) 0.3570 0.7027

Average recall score (↑) 0.7827 0.5101

Average F1 score (↑) 0.4866 0.5864

way variants with high confidence (Appx. Table 7 [21]). PathoLogic inferred 49
pathways identified across the three strains encompassing 15 amino acid biosyn-
thesis pathways and 17 pathway variants while triUMPF inferred 54 pathways
identified across the three strains encompassing 16 amino acid biosynthesis path-
ways and 19 pathway variants including L-methionine biosynthesis in MG1655,
CFT073 and EDL933 that was not predicted by PathoLogic. Neither method
was able to predict L-tyrosine biosynthesis I (Appx. Fig. 10 [21]).

3.3 Mealybug Symbionts Data

To evaluate triUMPF performance on distributed metabolic pathways, we used
the reduced genomes of Moranella and Tremblaya [22]. Collectively the two sym-
biont genomes encode intact biosynthesis pathways for 9 essential amino acids.
PathoLogic, mlLGPR, and triUMPF were used to predict pathways on individ-
ual symbiont genomes and a composite genome consisting of both, and resulting
amino acid biosynthesis pathway distributions were determined (Fig. 3). Both
triUMPF and PathoLogic predicted 6 of the expected amino acid biosynthe-
sis pathways on the composite genome while mlLGPR predicted 8 pathways.
The pathway for phenylalanine biosynthesis (L-phenylalanine biosynthesis I )
was excluded from analysis because the associated genes were reported to be
missing during the ORF prediction process. False positives were predicted for
individual symbiont genomes in Moranella and Tremblaya using both methods
although pathway coverage was reduced in relation to the composite genome.

3.4 CAMI and HOTS Data

To evaluate triUMPF’s performance on more complex multi-organismal
genomes, we used the CAMI low complexity [27] and HOTS datasets [29] com-
paring resulting pathway predictions to both PathoLogic and mlLGPR. For
CAMI low complexity, triUMPF achieved an average F1 score of 0.5864 in com-
parison to 0.4866 for mlLGPR which is trained with more than 2500 labeled
pathways (Table 2). Similar results were obtained for HOTS (see Appx. Section
E.4 [21]). Among a subset of 180 selected water column pathways, PathoLogic
and triUMPF predicted a total of 54 and 58 pathways, respectively, while mlL-
GPR inferred 62. From a real world perspective none of the methods predicted
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pathways for photosynthesis light reaction nor pyruvate fermentation to (S)-
acetoin although both are expected to be prevalent in the water column. Per-
haps, the absence of specific ECs associated with these pathway limits rule-based
or ML prediction. Indeed, closer inspection revealed that the enzyme catabolic
acetolactate synthase was missing from the pyruvate fermentation to (S)-acetoin
pathway, which is an essential rule encoded in PathoLogic and represented as a
feature in mlLGPR. Conversely, although this pathway was indexed to a com-
munity, triUMPF did not predict its presence, constituting a false-negative.

4 Conclusion

In this paper we introduced a novel ML approach for metabolic pathway infer-
ence that combines three stages of NMF to capture relationships between
enzymes and pathways within a network followed by community detection to
extract higher order network structure. First, a Pathway-EC association (M)
matrix, obtained from MetaCyc, is decomposed using the NMF technique to
learn a constrained form of the pathway and EC factors, capturing the micro-
scopic structure of M. Then, we obtain the community structure (or meso-
scopic structure) jointly from both the input datasets and two interaction matri-
ces, Pathway-Pathway interaction and EC-EC interaction. Finally, the consen-
sus relationships between the community structure and data, and between the
learned factors from M and the pathway labels coefficients are exploited to effi-
ciently optimize metabolic pathway parameters. We evaluated triUMPF perfor-
mance using a corpora of experimental datasets manifesting diverse multi-label
properties comparing pathway prediction outcomes to other prediction methods
including PathoLogic [14] and mlLGPR [20]. During benchmarking we realized
that the BioCyc collection suffers from a class imbalance problem [11] where some
pathways infrequently occur across PGDBs. This results in a significant sensi-
tivity loss on T1 golden data, where triUMPF tended to predict more frequently
observed pathways while missing more infrequent pathways. One potential app-
roach to solve this class-imbalance problem is subsampling the most informative
PGDBs for training, hence, reducing false-positives [16]. Despite the observed
class imbalance problem, triUMPF improved pathway prediction precision with-
out the need for taxonomic rules or EC features to constrain metabolic potential.
From an ML perspective this is a promising outcome considering that triUMPF
was trained on a reduced number of pathways relative to mlLGPR. Future devel-
opment efforts will explore subsampling approaches to improve sensitivity and
the use of constrained taxonomic groups for pangenome and multi-organismal
genome pathway inference.
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Abstract. A biological pathway is an ordered set of interactions
between intracellular molecules having collective activity that impacts
cellular function, for example, by controlling metabolite synthesis or
by regulating the expression of sets of genes. They play a key role in
advanced studies of genomics. However, existing pathway analytics meth-
ods are inadequate to extract meaningful biological structure underneath
the network of pathways. They also lack automation. Given these circum-
stances, we have come up with a novel graph theoretic method to analyze
disease-related genes through weighted network of biological pathways.
The method automatically extracts biological structures, such as clusters
of pathways and their relevance, significance of each pathway and gene,
and so forth hidden in the complex network. We have demonstrated the
effectiveness of the proposed method on a set of genes associated with
coronavirus disease.

Keywords: Biological pathway · Coronavirus disease 2019
(COVID-19) · Weighted network · Gene ontology · Disease ontology

1 Introduction

Identifying the functional correlations among molecular components is very cru-
cial to accurately deciphering the structure-function interdependencies. Usually,
most of the biological activities are not stemming from a single molecule but a
set of molecules interacting in a concerted way (for instance, polygenic disor-
ders). Consequently, deciphering biology under the context of networks is very
crucial and promising. From the perspective of graph theory, a biological network
consists of a set of nodes representing specific biological entities. Two nodes are
connected by an edge depicting an affiliation between them. Based on the char-
acteristic of a network, an edge can be directed or undirected. The weight of an
edge defines similarity or dissimilarity between the two participating nodes, such
as semantic similarity, Pearson’s coefficient, etc. For instance, in protein–protein
interaction (PPI) networks, nodes and edges represent proteins and physical
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interactions, respectively [20,23]. For another instance, in metabolic networks,
nodes serve as metabolites and edges are links for these metabolites engaging
in the same biochemical reactions [11,15]. In this context, accurately identifying
functional modules (i.e. clusters) in biological network is very critical because it
helps us to figure out the underneath structure, interactions, and dynamics of
cell functions [8,21].

Applying biological network analytics to a set of genes related to a specific
disease has been done before by several researchers. For example, Hu et al.
have taken a pathway-based approach and applied a network analysis method to
understand the molecular features of Alzheimer’s disease [14]. Other researchers
have proposed mining algorithms targeting protein-protein interaction networks
(PPINs) for Homo sapiens. Theses algorithms are designed to discover functional
modules (clusters) of protein complexes. This is because such densely connected
sub-graphs usually lead to substantial biological knowledge at the molecular
level. As an example, Sriwastava et al. have proposed a quasi-clique mining
method for detecting these dense regions [22]. Melo et al. have used a Machine
Learning approach to detect such hot spots [17]. In their work they used 27
algorithms with different cost functions and reported the best algorithm.

In this article, we have proposed a novel methodology for analyzing complex
network of biological pathways. It is scale-free, i.e. there is no hard thresholding
to discard edges based on weight. It runs in 4 stages. At first, it picks a set of
enriched biological pathways for a given set of disease-related genes. Later, it
constructs a weighted network where each pathway acts as a node. Two nodes
are connected by an edge if they have some common biological entities and the
weight of this edge refers to that similarity. Here, our similarity score is well
defined and its values are ranging from 0 to 1. At the third stage, it clusters the
network into a set of non-overlapping groups having highest modularity. Finally,
it ranks the pathways based on their significance.

The rest of the paper is organized as follows. Our proposed methodology
is described in Sect. 2. Results and some relevant discussions are portrayed in
Sect. 3 and Sect. 4 concludes the paper.

2 Methods

Our proposed algorithm consists of 4 basic steps as stated earlier. At the begin-
ning, we find a set of statistically significant biological pathways with respect to
a curated list of disease-related genes. We then form a network of pathways by
employing an innovative weighted network construction method. At the third
step, we detect a set of sub-networks by clustering the entire network. Finally,
we analyze each of the sub-networks based on closeness centrality. Pseudocode
of our proposed method can be found in Algorithm1. Next, we illustrate our
proposed method in detail.
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Algorithm 1. Pathway Network Analytics Method
Input: A set of disease-related genes G, shared genes s, and common genes c.
Output: A set of functional modules, pathway influences.

1: Let D be a database of biological pathways (such as Reactome, KEGG, etc.);
2: Pick a set of pathways Pinterim ∈ D with respect to G where each pathway p ∈ P

contains at least c number of common genes in G;
3: Retain statistically significant pathways P ∈ Pinterim by employing hypergeometric

overrepresentation test;
4: Initialize a weighted network N where each pathway p ∈ P acts as a node;
5: for each distinct and ordered pair (pi, pj) ∈ P do
6: ti ← pi ∩ G
7: tj ← pj ∩ G
8: if |ti ∩ tj | ≥ s then
9: Compute the similarity score lpipj between pi and pj using Equation 1;

10: if lpipj > 0 then
11: Add an edge epipj in network N ;
12: Weight of edge epipj , wpipj ← lpipj ;
13: end if
14: end if
15: end for
16: Calculate the influence score of each pathway p ∈ P using closeness centrality ;
17: Cluster the network N by a suitable graph clustering algorithm;
18: for each cluster q ∈ Q do
19: Calculate the influence score of each pathway p ∈ q using closeness centrality ;
20: end for
21: Return the clusters, influence scores, etc.

2.1 Identification of Significantly Enriched Pathways

At first, we find a set of biological pathways from the database of pathways
(e.g. Reactome, KEGG, etc.) with respect to a given set of disease-related
genes (i.e. a set of genes known to be responsible for a specific disease, such
as Alzheimer’s, Parkinson’s, or COVID-19). Later, we employ hypergeometric
test that uses the hypergeometric distribution (https://en.wikipedia.org/wiki/
Hypergeometric distribution) to calculate the statistical significance of a biolog-
ical pathway with respect to the given set of genes. Specifically, we computed a
hypergeometric p-value for each of the biological pathways to assess whether a
pathway is over-represented with those genes. Finally, we choose a set of enriched
pathways having Bonferroni corrected p-value < 0.05.

2.2 Construction of a Weighted Network

We build an undirected weighted graph to investigate interlinks and interac-
tions among the enriched biological pathways. Let G(V,E,w) be our undirected
weighted graph where each enriched pathway v ∈ V acts as a vertex. Two ver-
tices vi and vj will be connected by an edge e ∈ E iff (1) vi and vj share at least
x common genes and (2) the similarity between vi and vj is > a threshold, t. In

https://en.wikipedia.org/wiki/Hypergeometric_distribution
https://en.wikipedia.org/wiki/Hypergeometric_distribution
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our experiment, x and t were set to 2 and 0, respectively (i.e. there is no hard
thresholding). We define similarity between any two vertices in a way so that it
mimics a specific biological theme between them, if any. The similarity between
any two genes can roughly be defined by their common gene ontology (GO)
terms. The “biological process” sub-ontology of GO (GO-BP) is widely used
to evaluate sets of relationships between genes. It is due to the fact that genes
annotated with the same (or related) GO-BP terms are functionally homoge-
neous. Consequently, two pathways will be functionally similar if they contain a
set of functionally related genes between them. By considering this observation,
we compute the pair-wise Jaccard index between any two pathways. Suppose,
vi and vj pathways consist of Gi and Gj sets of genes of size m and n, respec-
tively. Let’s assume, Gi = {gi1, gi2, . . . , gim} and Gj = {gj1, gj2, . . . , gjn}. We then
extract the number of common GO-BP terms and divide it by the total num-
ber of unique terms of each pair of genes gi and gj possess to get the Jaccard
index. We add all such indices and normalize the final value by dividing it by
the number of such pairs to get the similarity score. As a result, the minimum
and maximum value of such a score will be 0 and 1, respectively. Intuitively, the
higher the score, the more will be two pathways functionally similar. Now, the
score constitutes the weight of the edge between vi and vj . Assume, gip and gjq
(1 ≤ p ≤ m and 1 ≤ q ≤ n, respectively) contain the sets of bip and bjq GO-BP
terms, respectively. The similarity score between any two vertices can then be
mathematically formulated as:

S(vi, vj) =

∑
m

∑
n

|bim∩bjn|
|bim∪bjn|

m × n
(1)

2.3 Identification of Sub-networks

Clustering is one of the most widely used techniques for exploratory data anal-
ysis. The goal here is to divide the biological pathways into several groups
such that each group of pathways represents a specific and distinct biological
event/theme. As the network of biological pathways often constitutes a small
number of nodes (≤50), we employed an optimal community structure predic-
tion algorithm [7]. It calculates the optimal community structure of a graph, by
maximizing the modularity measure over all possible partitions. Please, note that
modularity optimization is an NP-complete problem. Consequently, all known
algorithms have exponential time complexity in worst case. So, it is impossible
to run exact algorithms on a graph with large number of nodes having dense
connections. Louvain method is an attractive alternative in this context [6]. The
method is a greedy optimization method having time complexity O(n · log2n)
where n is the number of nodes in the network.

2.4 Identification of Important Pathways

In graph theory and network analysis, centrality is a very crucial notion in iden-
tifying influential nodes in a graph. It is used to measure the importance of
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distinct nodes in a graph. Applications include but are not limited to identifying
the most influential person(s) in a social network, key infrastructure nodes in the
Internet or urban networks, super-spreaders of disease, and so forth. Depending
on the definition of centrality, it comes in contrasting essences. Simplest one is
the degree centrality, which is defined as the number of edges incident on a par-
ticular node. A natural extension of degree centrality is closeness centrality. In
a connected graph, closeness centrality of a node is a measure of centrality in
a network, calculated as the reciprocal of the sum of the length of the shortest
paths between the node and all other nodes in the graph [4]. Consequently, the
more “central” a node is, the more closer it is to all other nodes in the graph.
Mathematically it is defined as: C(x) = 1∑

y d(y,x) where d(y, x) is the distance
between node x and node y. We have used closeness centrality as a metric to
identify influential pathways both in the entire network and corresponding sub-
networks. We normalize the score by multiplying it by n−1 where n is the total
number of nodes in the network. It is to be noted that we have replaced the
weight of each edge with 1 − weight before computing the closeness centrality.

3 Results and Discussions

3.1 Dataset Employed

To demonstrate the effectiveness of our proposed methodology, we have per-
formed rigorous experimental evaluations by considering a set of human protein-
coding genes linked to SARS-CoV-2 infection and COVID-19 disease. These
genes are curated from GENCODE (https://www.gencodegenes.org/human/
covid19.html). The list of genes consists of 560 genes extrapolated from recent
publications and in collaboration with other projects, such as recently published
drug repurposing studies by Zhou et al. [26] and Gordon et al. [12]. Throughout
the article, we dubbed this set of genes as covid-genes.

3.2 Outcomes and Relevant Discussions

As stated in Sect. 2, our network analytics method runs in 4 stages. Next, we
illustrate the experimental evaluations based on those stages in details.

3.2.1 Pathway Enrichment Analysis
At first, we chose a set of enriched biological pathways from database of path-
ways. In this study, Reactome [10] pathways were utilized to decipher the bio-
logical theme from the set of 560 covid-genes. Here is a brief review of Reactome
database. Reaction is the “nucleus” of the Reactome data model. A set of enti-
ties, such as nucleic acids, proteins, complexes, and small molecules engages in
reactions to form a network of biological interactions and are ultimately assem-
bled into pathways. Some notable examples of biological pathways in Reactome
database consist of signaling, innate and acquired immune function, transcrip-
tional regulation, translation, apoptosis, and classical intermediary metabolism.

https://www.gencodegenes.org/human/covid19.html
https://www.gencodegenes.org/human/covid19.html
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After employing hypergeometric test, we detect 30 Bonferroni corrected
(adjusted p < 0.05) biological pathways. Table 1 contains these 30 significant
pathways. It is to be noted that we only retain those enriched pathways each
having at least 5 genes in common with covid-genes to discard potentially spu-
rious and smaller pathways. Next we discuss about some of the enriched path-
ways. At first, consider interferon signaling pathways. Interferons, also known
as type I, type II, and type III interferons in humans, are proteins produced
by cells in response to infection. Insufficient or inappropriately timed activa-
tion of interferon signaling may contribute to severe cases of COVID-19 caused
by the coronavirus SARS-CoV-2 [5,13,19]. Now, consider basigin interactions
pathway. Basigin (BSG, in short) also known as extracellular matrix metallo-
proteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147) is a
protein encoding gene [16]. According to Wang et al. [25] host-cell-expressed basi-
gin (CD147) may bind spike protein of SARS-CoV-2 and possibly be involved
in host cell invasion.

Table 1. Bonferroni corrected enriched Reactome pathways. Gp refers to the number
of genes a pathway contains. Gc refers to the common genes between a pathway and
covid-genes.

Pathway Reactome ID p-value Gp Gc

Interferon alpha/beta signaling R-HSA-909733 5.93E−12 70 22

Interferon Signaling R-HSA-913531 4.57E−09 158 29

Influenza Infection R-HSA-168254 2.06E−08 63 17

Basigin interactions R-HSA-210991 3.63E−08 26 11

MHC class II antigen presentation R-HSA-2132295 4.98E−08 59 16

Disease R-HSA-1643685 9.80E−07 508 54

Metabolism of Angiotensinogen to Angiotensins R-HSA-2022377 1.05E−06 17 8

Interactions of Rev with host cellular proteins R-HSA-177243 2.33E−06 37 11

Peptide hormone metabolism R-HSA-2980736 3.14E−06 53 13

Influenza Life Cycle R-HSA-168255 3.14E−06 53 13

Host Interactions of HIV factors R-HSA-162909 4.17E−06 89 17

Mitochondrial protein import R-HSA-1268020 6.85E−06 65 14

Nuclear import of Rev protein R-HSA-180746 7.54E−06 34 10

Transport of Ribonucleoproteins into the Host Nucleus R-HSA-168271 1.82E−05 30 9

NEP/NS2 Interacts with the Cellular Export Machinery R-HSA-168333 1.82E−05 30 9

ISG15 antiviral mechanism R-HSA-1169408 1.82E−05 30 9

Export of Viral Ribonucleoproteins from Nucleus R-HSA-168274 2.44E−05 31 9

Activation of Matrix Metalloproteinases R-HSA-1592389 2.44E−05 31 9

Metabolism of proteins R-HSA-392499 2.59E−05 2000 146

Trafficking and processing of endosomal TLR R-HSA-1679131 2.91E−05 13 6

TRAF3-dependent IRF activation pathway R-HSA-918233 2.91E−05 13 6

Rev-mediated nuclear export of HIV RNA R-HSA-165054 4.24E−05 33 9

Nuclear Pore Complex (NPC) Disassembly R-HSA-3301854 5.49E−05 34 9

Neutrophil degranulation R-HSA-6798695 5.66E−05 485 47

Cellular response to heat stress R-HSA-3371556 6.93E−05 99 16

SUMOylation of DNA replication proteins R-HSA-4615885 1.13E−04 37 9

Regulation of Glucokinase by GRP R-HSA-170822 1.35E−04 30 8

Degradation of the extracellular matrix R-HSA-1474228 1.42E−04 105 16

Negative regulators of DDX58/IFIH1 signaling R-HSA-936440 1.44E−04 23 7

TRAF6 mediated IRF7 activation R-HSA-933541 1.75E−04 17 6



A Novel Pathway Network Analytics Based on Graph Theory 51

Fig. 1. Entire network built from 30 statistically significant pathways.

3.2.2 Entire Network Analysis
After finding the statistically significant pathways, we build a network as stated in
Sect. 2. We found 243 covid-genes (out of 560) in the enriched 30 Reactome path-
ways. Enrichment analyses based on GO-BP and DO terms have been performed
with respect to those 243 covid-genes.

GO-BP Enrichment Analysis. One of the main uses of the GO terms is to
perform enrichment analysis on a given set of genes. For instance, an enrichment
analysis will find which GO terms are over-represented (or under-represented)
using annotations for that set of genes. We have performed enrichment analysis
on 243 covid-genes based on GO-BP terms and retained 163 GO-BP Bonferroni
corrected (adjusted p < 0.05) terms. Top 10 enriched GO-BP terms can be found
in Table 2. Most of the terms are associated with COVID-19 disease.

Table 2. Bonferroni corrected top 10 enriched GO-BP terms.

ID Description Gene ratio p-value Adjusted p

GO:0019058 viral life cycle 39/243 3.61E−28 1.35E−24

GO:0043312 neutrophil degranulation 47/243 2.17E−27 8.14E−24

GO:0002283 neutrophil activation involved in immune
response

47/243 2.85E−27 1.07E−23

GO:0042119 neutrophil activation 47/243 6.97E−27 2.61E−23

GO:0002446 neutrophil mediated immunity 47/243 7.62E−27 2.85E−23

GO:0043903 regulation of symbiosis encompassing
mutualism through parasitism

32/243 2.23E−25 8.34E−22

GO:1903900 regulation of viral life cycle 28/243 2.66E−25 9.98E−22

GO:0050792 regulation of viral process 30/243 8.35E−25 3.13E−21

GO:0051607 defense response to virus 32/243 9.31E−24 3.49E−20

GO:0009615 response to virus 35/243 1.88E−22 7.04E−19
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Fig. 2. Closeness centrality values for pathways in clusters C1, C2, and C3.

DO Enrichment Analysis. Like GO, the disease ontology (DO) is a formal
ontology of human disease. We have performed enrichment analysis on the set
of top 243 covid-genes as noted above based on DO terms and retained 7 DO
Bonferroni corrected (adjusted p < 0.05) terms (please, see Table 3). Almost
all of the retained enriched DO terms are associated with COVID-19 disease.
For instance, Wafa et al. [3] reported the first case of hepatitis B virus (HBV)
reactivation caused by COVID-19 in a young adult with altered mental status
and severe transaminitis.

Table 3. Bonferroni corrected enriched DO terms.

ID Description Gene ratio p-value Adjusted p-value

DOID:2237 hepatitis 31/150 5.23E−11 2.93E−08

DOID:8469 influenza 16/150 2.4E−10 1.35E−07

DOID:2043 hepatitis B 19/150 3.72E−09 2.08E−06

DOID:3459 breast carcinoma 20/150 2.81E−05 0.0157

DOID:1883 hepatitis C 15/150 2.86E−05 0.016

DOID:184 bone cancer 15/150 4.66E−05 0.0261

DOID:3347 osteosarcoma 14/150 4.72E−05 0.0264
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Pathway Significance. As noted earlier, after constructing the network, we
compute the influence of each pathway based on closeness centrality. The corre-
sponding network is shown in Fig. 1. The influence of each pathway with respect
to the entire network is proportional to the diameter of its representative circle.
“Metabolism of proteins” and “Trafficking and processing of endosomal TLR”
pathways posses the highest (0.91) and lowest (0.36) centrality scores, respectively.

Table 4. Top 6 most occurring covid-genes in each cluster. NP refers to the number
of pathways a specific gene is found. %O represents the fraction of such pathways.

C1 C2 C3

Gene NP %O Gene NP %O Gene NP %O

IRF3 6 100 CTSG 6 67 RAE1 14 100

DDX58 5 83 CTSD 5 56 NUP88 14 100

TRIM25 5 83 MME 4 44 NUP58 14 100

IRF7 4 67 CTSB 4 44 NUP98 14 100

ISG15 4 67 CTSK 4 44 NUP54 14 100

MX1 3 50 CTSS 4 44 NUP210 14 100

3.2.3 Sub-network Analysis
After constructing the weighted network, we cluster the network to find func-
tional modules. Since the weight of an edge corresponds to the functional similar-
ity between two pathways, please see Sect. 2, each of the sub-networks consisting of
highly interconnected pathways should mimic a specific biological theme or func-
tionality. Please note that our network is scale-free, i.e. there is no thresholding
on weights. Also we do not need to provide the number of clusters a priori. The
clustering algorithm automatically dismantles the entire weighted network into
3 groups, namely C1, C2, and C3. Figure 1 shows the entire network along with
cluster annotations. We have also computed pathway centrality scores for each of
the sub-networks as shown in Fig. 2.

At first, consider C1 cluster. It consists of 6 pathways and all of them are
related to immune systems in humans. Therefore, our proposed method accu-
rately classify a set of interrelated and analogous pathways into a group. Accord-
ing to the centrality measure “ISG15 antiviral mechanism” is the most influential
pathway in this cluster. It is a potential regulator of the immune response from
viral infection. As reported by [24] viral de-ISGylases, including SARS-CoV-2
PLpro, positively modulate ISG15 secretion. Now, please, see Table 4 for the top
6 most occurring covid-genes in cluster C1. IRF3 appears in all the 6 pathways. It
plays a critical role in the innate immune system’s response to viral infection [9].

C2 sub-network contains 9 pathways and is very interesting. It is a mix
of protein metabolism and immune system related pathways. Several studies
(such as [18]) demonstrated the strong link between immune cell function and
protein metabolism. Table 4 contains top 6 most occurring covid-genes in cluster
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C2. CTSG has been found in 6 (out of 9) pathways. According to [2], it was
significantly altered in naso-oropharyngeal samples of SARS-CoV-2 patients.

Finally, C3 consists of 14 pathways. Almost all of them are related to some
specific viral infections. Please, see Table 4 for the top 6 most occurring covid-
genes in cluster C3. All the top genes have been found in all the 14 pathways.
As reported by [1], SARS-CoV-2 ORF6 disrupts nucleocytoplasmic transport
through interactions with RAE1 and NUP98.

4 Conclusions

In this article, we have proposed a formal framework to decipher complex struc-
ture among the interacting biological pathways. To begin with, a set of enriched
biological pathways are identified with respect to a set of disease-related genes.
An innovative weighted network is then constructed. It is scale-free, i.e. there is
no hard thresholding to discard edges based on weights. The weighted network
is then disassembled to find a set of non-overlapping and functionally different
clusters. We have demonstrated its effectiveness by employing a set of genes
potentially associated with the COVID-19 disease.
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Abstract. Disease profiling, treatment development, and the identifica-
tion of new cell populations are some of the most relevant applications
relying on differentially expressed genes (DEG) analysis. Three leading
technologies emerged; namely, DNA microarrays, bulk RNA sequencing
(RNA-seq), and single-cell RNA sequencing (scRNA-seq), the main focus
of this work. We introduce two novel approaches to assess DEG: extended
Bayesian zero-inflated negative binomial factorization (ext-ZINBayes)
and single-cell differential analysis (SIENA). We benchmark the pro-
posed methods with known DEG analysis tools using two real public
datasets. The results show that the two procedures can be very competi-
tive with existing methods (scVI, SCDE, MAST, and DEseq) in identify-
ing relevant putative biomarkers. In terms of scalability and correctness,
SIENA stands out and may emerge as a powerful tool to discover func-
tional differences between two conditions. Both methods are publicly
available at https://github.com/JoanaGodinho/.

Keywords: scRNA-seq · Latent variable models · Variational
inference

1 Introduction

Gene expression is a biological process that affects how living organisms operate.
Studying and understanding gene expression leads to a broader knowledge of how
cells work and how they evolve. With this knowledge, groundbreaking advances
can be achieved in the fields of genetics, molecular biology, and medicine.

One of the most relevant tasks performed through gene expression assessment
is the identification of differentially expressed genes (DEG). DEG are genes
that show different expression levels across different types of cells. With DEG
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identification, we can deepen our understanding on cell differentiation, study
disease phenotypes, and assess how certain treatments perform [12].

Research has provided several computational methods aiming to carry out
such task. Initially, differential expression (DE) analysis was only performed
using gene expression obtained from DNA microarrays. Then, technological
advances empowered the emergence of RNA sequencing (RNA-seq) protocols
to profile gene expression. In a first approach, DE analysis over bulk RNA data
was performed using packages, such as Limma [15], that were initially designed
to account for microarray input. However, due to differences between microar-
ray and RNA-seq data, new methods, such as DEseq [1] and edgeR [14], were
developed specifically for the latter.

In more recent years, single-cell RNA sequencing (scRNA-seq) has stood out
from the previous two. The appeal for this kind of data is the possibility to
perform detailed analysis with high-resolution data, given that gene expression
is described by mRNA counts in individual cells. Nonetheless, the data is still
subject to the presence of noise, which unfolds as extra variation and false zero
counts, caused by dropout events, batch effects, stochastic gene expression, or
variations in sequencing depth (or library size). In order to prevent wrong conclu-
sions, one must seek to disentangle correct biological information from the noisy
data. One suitable approach is to use a latent variable model (LVM). Meth-
ods such as SCDE [10], MAST [7], and scVI [11] take this approach to identify
DEG. However, there is a need for new techniques, since scRNA-seq datasets are
becoming increasingly larger, making some of the existent methods inefficient.

In this work, we propose two new methods to perform DE analysis (DEA):
ext-ZINBayes (extended Bayesian zero-inflated negative binomial) and SIENA
(SIngle-cEll differeNtial Analysis). Both rely on a LVM and variational inference
(VI). ext-ZINBayes adopts ZINBayes [6], developed for dimensionality reduction.
SIENA operates under a new LVM defined based on existing models. We bench-
mark their performances with other methods, using two public datasets.

2 Methods

To build a scRNA-seq analysis method, one must account for the presence of
confounding factors. Using a LVM has shown to be a reliable approach to sepa-
rate the additional variability added by such factors. In a latent variable model,
variables are either observed or unobserved (latent). The latent variables (Z)
are responsible for capturing and describing hidden factors that influence the
observed variables (X). So, in the single-cell RNA context, the observed vari-
ables would be the counts, and the latent would describe the confounding factors.

The main idea behind VI [3] is to find a tractable distribution q(Z) that best
approximates the posterior. To do so, it assumes that q(Z) belongs to a family
of distributions, defined by parameters v. From a more in-depth perspective, VI
aims to find the parameter values that make q(Z) closest to p(Z|X). To evaluate
the dissimilarity between the distributions, VI relies on the Kullback-Leibler
(KL) divergence, calculated as Eq(Z)[log q(Z) − log p(Z|X)], where Eq(Z) is the
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expected value with respect to q(Z). Finding the optimal v amounts to finding v
which minimize th previous equation. However, the KL divergence involves the
unknown posterior, thus an alternative metric is required. This metric is known
as the Evidence Lower BOund (ELBO) and is derived from the KL divergence.
The ELBO is calculated as Eq(Z)[log p(Z,X) − log q(Z)]. In this case, to find v,
one maximizes the ELBO. The performance of VI techniques is greatly influenced
by the choice of the family Q [3]. The most commonly used is the mean-field
variational family, which assumes independence between all latent variables. As
such, each unobserved variable follows a separate variational distribution. Then,
for a set of N latent variables, q(Z) can be obtained through q(Z) =

∏N
j=1 q(Zj).

2.1 ext-ZINBayes

This method is an extension of ZINBayes [6], developed for dimensionality reduc-
tion. With an additional feature, we enable it to detect DEG. ZINBayes aimed to
create an approach able to discover a true biological representation of the data,
without the distortion caused by noise factors, taking into consideration batch
effects, dropout events, and stochastic gene expression. The model is built upon
a Gamma-Poisson mixture so each count follows a Negative Binomial (NB) dis-
tribution, to account for overdispersion of RNA-seq data. However, it may not
be sufficient to account for the excessive amount of zeros caused by dropout
events. Therefore, zero-inflation (ZI) was added to the generative process.

For a given set of G genes and N cells, the count of each gene g in cell i is
defined by Xig, where 1 ≤ g ≤ G and 1 ≤ i ≤ N . Xig is either governed by the
NB component or, in case of a dropout, is modelled as a constant zero. Thus,

Dig ∼ Bernoulli (πig) Yig ∼ Poisson (λig)

λig ∼ Gamma
(

θg,
θg

ρigLi

)

Xig =

{
Yig if Dig = 0
0 otherwise

,

where Yig generates the count’s magnitude if Dig indicates that Xig is not a
dropout. λig parameterizes Yig corresponding to the mean expression of g in i.
Li is a scale factor linked to the library size of cell i, i.e., the total amount of
transcripts detected in cell i, while θg corresponds to a dispersion factor related
to gene g. Both are seen as latent random variables, Li ∼ Lognormal (μi, σi) and
θg ∼ Gamma (2, 1). The formulations ρig and πig correspond, respectively, to the
percentage of transcripts of gene g in cell i and the probability of Xig being a
dropout. These yield both cell-specific and gene-specific features: Ci = [Zi, si],
ρig = CiW0,g∑

g CiW0,g
, and logit(πig) = CiW1,g. The cell-related features are the

batch and the K-dimensional biological signature of the cell (si and Zi). The
gene-related are the factor loadings W0,g and W1,g. While si is a B-sized one-
hot representation, with B being the number of batches, Zi, W0,g, and W1,g

are collections of random variables whose components are modelled as follows:
W0,gk′ ∼ Gamma (0.1, 0.3), W1,gk′ ∼ Normal (0, 1) and Zik ∼ Gamma (2, 1),
where 0 ≤ k ≤ K and 0 ≤ k′ ≤ K + B [6]. Given the model’s definition, exact
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inference can not be performed due to the intractability of the posteriors. The
model is not conditionally conjugate, making it impossible to use coordinate
ascent VI (CAVI). Thus, reparameterization gradients (RG) was used.

To identify DEG between two cell subpopulations, we adopted the procedure
developed in [11]. For each gene g, we define two hypotheses given a pair of cells
from different populations. Both cells are from the same batch and have counts
x1 and x2: Hg

a = ρ1g > ρ2g and Hg
b = ρ1g ≤ ρ2g. The first hypothesis states that

the percentage of transcripts of gene g in cell 1 is higher than in cell 2, while
the second hypothesis translates into the opposite. Then, a Bayes factor, B, is
calculated as: B = p(Hg

a |x1,x2) p(Hg
b )

p(Hg
b |x1,x2) p(Hg

a)
. Its value quantifies the ratio between the

likelihood probabilities given each hypothesis. High factors reflect stronger beliefs
over Hg

a , while factors closer to zero reflect more support over Hg
b . To simplify the

assessment of the probability ratio, we consider the factor’s logarithm and not its
raw value. If the logarithm is negative, it means Hg

b is more prone to be true; if
it is positive, it means the opposite: Hg

a is more likely correct. This implies that
higher positive values yield higher supports over Hg

a , whereas lower negative
values yield higher supports over the alternative hypothesis. Given that Hg

a

and Hg
b are mutually exclusive and have equal prior probabilities, i.e., p(Hg

a) =
p(Hg

b ), log(B) is calculated as: log(B) = log p(Hg
a |x1,x2)

1−p(Hg
a |x1,x2)

= log(p(Hg
a |x1, x2)) −

log(1 − p(Hg
a |x1, x2)). To compute the posterior p(Hg

a |x1, x2), the probabilities
ρ1g and ρ2g, which make Hg

a true, need to be summed. Given that the ρ values
depend on Z1, Z2, and W0,g, we need to integrate all possible combinations of
the three that yield Hg

a true,

p(Hg
a |x1, x2) =

∫∫∫

(w0,g,z1,z2)

I[ρ1g > ρ2g] q(z1) q(z2) q(w0,g). (1)

In the equation above, q(z1) and q(z2) correspond to the probabilities of cell 1
having a z1 representation and cell 2 having a z2 representation, q(w0,g) corre-
sponds to the probability of gene g having w0,g has its loading factors. Each of
these probabilities is obtained through the corresponding variational distribution
shaped during inference.

Since calculating the exact value of the integral is very computationally
demanding, we used Monte-Carlo approximation. Thus, p(Hg

a |x1, x2) is an
empirical average of ρ1g > ρ2g over a random set of triplets (z1, z2, w0,g) sam-
pled from the variational distributions, where |S| is the total number of samples
assessed:

p(Hg
a |x1, x2) ≈ 1

|S|
∑

(w0,g,z1,z2)

I[ρ1g > ρ2g]. (2)

This process is performed over all possible cell pairs that contain one cell from
each of the two subpopulations under study. However, the ρ values are affected
by s, which is responsible for specifying the batches. Thus, the process is only
viable if all cells come from the same batch. When the counts come from two or
more batches, each cell must be paired with another cell from the same batch but



60 J. Godinho et al.

with different types/populations. If inter-batch pairs were allowed, the differences
between the cells’ ρ could be biased by batch effects. The factor’s logarithm of
each pair is then averaged and the resulting mean used as a score. Above a
threshold value between 2 and 3 (see [9]), the gene is classified as a DEG. To
scale this procedure to very large datasets, the method enables the use of a
subset of cell pairs. If the dataset contains cells from only one batch, we simply
randomly pick the specified number of pairs. On the other hand, if the dataset
gathers multiple batches, the proportion of pairs from each batch in the subset
is equal to the proportion of each batch in the original dataset.

2.2 SIENA

For our second proposed method, we designed a new LVM, where each count
follows a zero-inflated NB (ZINB) distribution. As we mentioned before, with
a ZINB distribution, one can depict the overdispersion and the excess of zero
entries, typical of scRNA data. Like in ZINBayes, the NB is built through a
Gamma-Poisson mixture.

We decided to adopt several variables used both in ZINBayes and in scVI,
making our model able to account for noise factors such as different library sizes,
dropouts, and stochastic gene expression. The major difference is the removal of
indicators s and variables Z, which specify the batches and the low dimensional
representations of each cell’s biological features. Below we present the model,
where Xig reports the number of reads mapped to gene g in cell i:

Li ∼ Lognormal (μi, σi) βig ∼ Gamma (
1
3
, 1) ρig =

βig∑
g βig

λig ∼ Gamma (θgLiρig, θg) Yig ∼ Poisson (λig) Dig ∼ Bernoulli (πig)

Xig =

{
Yig if Dig = 0
0 otherwise

.

On one hand, variables Li, ρig, Dig, and λig encode the same as in ZINBayes.
Li is a scaling factor, ρig is the percentage of gene g transcripts in cell i, λig is
the expression mean, and Dig indicates if count Xig is a dropout. On the other
hand, θg, the gene’s dispersion factor, is not seen as a random variable, but as
a non-random model parameter, and πig, the probability of a dropout event,
is defined as a hyperparameter. Nonetheless, these are not the only differences
between this model and ZINBayes’s.

Similarly to [11], Li is drawn from a log-normal where the mean and variance
of the underlying normal, μi and σi, are set, respectively, as the mean and the
variance of the log scaled sequencing depths/library sizes considering only cells
from the same batch as cell i. In ZINBayes, μi and σi are the mean and variance
of the log library sizes considering all cells. The choice to model Li as a log-
normal is to restrict its domain to be positive since it’s a scaling factor. Note
that Li encodes a factor proportionally related to the sequencing depth; it is not
the actual sequencing depth, as pointed out in [11]. As an alternative, we also
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tested Li as a Gamma, where its mean and variance are equal to the mean and
variance of the library sizes in i’s batch.

Regarding ρig, they are set as the ratio between a factor related to gene
g and cell i, βig, and the sum of cell i factors with each gene. We take this
formulation to not only restrict ρ ∈ [0, 1] but also

∑
g ρig = 1. Both of these

conditions need to be imposed because ρig reflects a percentage, which translates
into a relative frequency. An alternative approach would be to model ρ as a Beta
distribution. However, using a Beta does not fit ρ properly since it only complies
with the domain constraint. Moreover, given that no biological representation is
defined for each cell, the biological variability is implicitly described by variable
ρ. Notwithstanding, each ρ may be affected by the cell’s batch since no batch-
specific variable is modelled.

For the latent factors βig, we chose to posit a Gamma with α = 1
3 and β = 1

because it leads to a distribution where most of its probability density is placed
near zero, yet its expected value is 1

3 . Due do its tail, this Gamma generates, in
each cell, very low factors for most genes, but higher factors for a restricted set.
In theory, this set is composed by cell i highly expressed genes.

As mentioned before, the NB is attained through a Gamma-Poisson mixture
determined by variables λig and Yig, according to the following:

If X ∼ Poisson (λ) and λ ∼ Gamma (r,
1 − p

p
) then X ∼ NB (r, p). (3)

In this formulation, the NB output is defined as the number of successes until
r failures occur, given a p probability of success. As a result, its expected value
is rp

1−p . This is the NB formulation taken in our model. When deciding the
parameters of λig’s Gamma, we aimed to fix the NB expected value as Liρig.
By defining the shape as θgLiρig and rate as θg we achieve that.

Finally, zero-inflation is employed by variable Dig, which determines if Xig is
necessarily zero. Dig is drawn from a Bernoulli distribution, since Dig only needs
to take two values, one indicating dropout occurrence and another one stating
non-occurrence. The probability of the Bernoulli, πig, is set as the proportion of
zero entries of gene g over all cells from the same type and batch as cell i. For
instance, if 60% of gene g counts in type A and batch 1 cells are zero, then πig

is set as 0.6 for all type A and batch 1 cells.
Regarding inference, we use reparameterization gradients. We resort to VI

because the counts’ marginal likelihood is intractable, so exact inference can not
be applied. In addition, the model is not conditionally conjugate, so CAVI can
not be implemented. However, to use RG, variable Dig needs to be discarded
since it is not differentiable. As such, instead of defining Xig with a conditional
assignment, we set it as a mixture of two components: one is the NB while the
other models the zero-inflation, generating only zeros. The ZI part is determined
by a Deterministic distribution, which takes only the value zero, so all its density
is placed over that value. Given that in a ZI model, zeros can be generated from
the two components, the likelihood of Xig is calculated as follows: p(Xig|βi, Li) =
πig × pDet(Xig) + (1 − πig) × pNB(Xig|βi, Li). As we can see from the equation
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above, we manage to also integrate out λig and Yig, due to Eq. (3). As such,
the RG mechanism merely has to find a distribution q, which approximates
p(βi, Li|Xi). The variational distribution q(βi, Li) is considered mean-field, and
thus can be factorized in q(βi) and q(Li); q(βi) can be further factorized into
∏G

i=1 q(βig). Both q(Li) and q(βig) distributions are assumed to be log-normal
since βig and Li are positive variables, and RG performs better when it has to
optimize normal distributions.

We build two inference networks: one outputs q(βi) parameters, i.e., the mean
and variance of each of its q(βig); the other generates the mean and variance for
q(Li). With this approach, we are able to scale inference to very large datasets,
since optimization is carried only over global variables, the weights, instead of
local variables, the means and variances. Each network has one hidden layer with
128 nodes, and its output layer has two heads, one for the mean(s) and another
one for the variance(s). A sotfplus transformation is applied over the variance
head, to restrict it to be positive. In the hidden layer, a batch normalization step
is employed before activation. In addition to the neural networks, memory-wise
scalability is improved via batch training where, in each iteration, we break the
full dataset into several subsets with equal size and use each one to do an update
step. Regarding θg optimization, we iteratively set it as a Maximum Likelihood
Estimation (MLE), after one update step over the networks’ weights. Therefore,
after inference, θg will have a value that maximizes the likelihood of the counts
given the obtained optimal variational parameters.

To assess if a given gene g is a DEG, we apply the same procedure as in ext-
ZINBayes. Given a cell pair, we define two exclusive hypotheses like the ones in
Sec. 2.1. Then, log scaled Bayes factors are calculated for each cell pair, and the
absolute value of their average is used as a metric to classify g as DEG/non-
DEG. The difference from the ext-ZINBayes procedure is the calculation of
p(Hg

a |x1, x2); in this approach, ρig only depends on βi. Consequently, it is only
necessary to integrate all combinations of β1 and β2 that make Hg

a true:

p(Hg
a |x1, x2) =

∫∫

(β1,β2)

I[ρ1g > ρ2g] q(β1) q(β2). (4)

This integral is also approximated through Monte Carlo, where the samples
are drawn from β1 and β2 variational distributions. Given that, in our model,
we do not specify any variable identifying each cell’s batch, the ρ values will
be tampered by batch effects. To overcome this, we only pair cells that come
from the same batch, just like in ext-ZINBayes. This way, the DE analysis is
more truthful to biological differences. Furthermore, we scale the Bayes factor
calculation by providing the optional use of a subset of pairs.

3 Results

To assess the performance of ZINBayes and SIENA, we used two known real
scRNA-seq datasets: Islam and PBMC (Peripheral Blood Mononuclear Cells).
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Since none of the datasets has the genes identified as being DEG or not, we
considered as ground truth the ones detected in the corresponding microarray
dataset using Limma, similarly to [4,10].

The Islam dataset [8] contains expression counts of 92 embryonic cells of
the house mouse: 48 Embryonic stem (ES) cells and 44 Embryonic fibroblast
(MEF) cells. The PBMC is a droplet-based dataset that contains count data of
human peripheral blood mononuclear cells, which were sequenced in two different
batches. The cells are divided into four different types, where 4996 are CD4+ T
cells, 1448 are CD8+ T cells, 1621 are B cells, and 339 are Dendritic cells, which
amount to a total of 8404 cells. Regarding the gold standard results, we used the
microarray dataset Moliner [13] for the comparison between ES and MEF cells
and two microarray datasets of PBMC, one for the CD4+T vs. CD8+T analysis
and the other for the B vs. Dendritic analysis. To obtain the Islam and the two
PBMC microarray datasets (CD4+T vs. CD8+T and B vs. Dendritic), we used
the GEO database [5] using the codes GSE29087, GSE8835, and GSE29618,
respectively. The single-cell PBMC dataset is a subset of the one used in [11].
For Moliner, we extracted the data from the .CEL files used in [4].

As a preprocessing step, we filtered out the genes in the single-cell datasets
that were not in the corresponding microarray datasets and vice-versa. In addi-
tion, genes for which there was no information about their length were also
removed, since MAST implements a TPM (Transcripts per Million) normal-
ization, that requires the length. As such, DE analysis between types ES and
MEF was carried out over 6757 genes, while for the CD4+T vs. CD8+T and B
vs. Dendritic analyses, only 3346 genes were evaluated.

We first assess the effects of different settings of SIENA, and ext-ZINBayes,
then we benchmark their performances with existing methods: SCDE, MAST,
scVI, and DEseq. The first three were designed specifically for scRNA data,
whereas DEseq is used for both bulk and single-cell data. To run MAST and
DEseq, we used the corresponding R packages available on the Bioconductor
project. For SCDE, we used the R implementation provided by the authors,
and for scVI, we used the Python release 0.3.0. Finally, we compare the biolog-
ical conclusions drawn from each methods’ rank through a gene set enrichment
analysis (GSEA), where we compare the Gene Ontology (GO) [2].

Inspired by what the authors in [16] concluded, we decided to evaluate how
the zero-inflation affected SIENA and ext-ZINBayes. The full analysis is available
in a Supplementary File (https://github.com/JoanaGodinho/).

To compare our methods’ and the four mentioned DE procedures’, we used as
a benchmark measure the average AUC. Out of the four, only MAST and DEseq
are deterministic. The results are shown in Fig. 1. To generate the bar plot, we
ran and calculated the AUC of MAST and DEseq only one time, whereas, for
the other methods, we repeated the process 50 times and averaged the AUC
values. Both scVI and SIENA were run with gene dispersion and without ZI.
Ext-ZINBayes was also operated without ZI, but unlike for SIENA and scVI,
no dispersion was adopted. With Islam each run had 1000 epochs (for the three
methods), while with PBMC, each run of SIENA and scVI had 500 epochs.

https://github.com/JoanaGodinho/
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Fig. 1. Average AUC values for each method with the Islam dataset and PBMC.

As seen in Fig. 1a, with the Islam dataset, SIENA yields better results show-
ing an average AUC close to 69%, while DEseq has the lowest average out of all
the methods. Nonetheless, SIENA presents a higher variation (5%), given that
two runs generated an AUC∼64%. All the differences between the average AUC
are statistically significant (Welch’s t-tests, p -values < 0.01). Regarding Fig. 1b
analysis, all methods, except SCDE and ext-ZINBayes, present a higher average
AUC when conducting DE analysis between B and Dendritic cells than between
ES and MEF. SCDE is the only that shows a great decrease in performance,
having an average AUC < 50%, whereas SIENA stands out as the best with
an average AUC of 77.3%. Unlike in the ES vs. MEF test, ext-ZINBayes shows
the highest variance. Regarding the CD8 vs. CD4 comparison (Fig. 1c), SIENA
obtains the best mean AUC (65%), while all the other methods perform con-
siderably worst, having an average AUC< 60%. Once again, SCDE shows the
worst AUC. Like in the B vs. Dendritic test, ext-ZINBayes shows the highest
variance in the results. For both SIENA and ext-ZINBayes, the log Bayes factors
were calculated using a subset of cell pairs. More specifically, 7.5×105 pairs were
used, and, for each of those pairs, 100 samples of ρ were computed.

In both PBMC tests, obtained AUC are more divergent than the ones gath-
ered in ES vs. MEF test. While in the latter, the difference between the average
AUC of the best method and the worst is slightly lower than 6%, in B vs. Den-
dritic and CD4 vs. CD8 tests, the difference is around 30% and 20%, respectively.
Almost all mean AUC differences are statistically significant for both PBMC
comparisons (Welch’s t-tests, p-values < 0.01), expect ext-ZINBayes and DEseq
in the CD4 vs. CD8 test (p-value = 0.075).

Besides AUC calculations, it is also pivotal to assess how each method scores
the genes, i.e., how certain they are that a given gene is a DEG. We compare for
each gene in the Islam dataset, the DE metrics of each method with the p-values
obtained by Limma. The full results are available in the Supplementary File.

Given the poor results under the CD4 vs. CD8 test, we deepen our analysis
over the test with an intersection graph in Fig. 2, without considering the results
from Limma. To generate the plot, we considered the 50 runs of SIENA, SCDE,
scVI, and ext-ZINBayes conducted for the AUC analysis, and for each method,
we calculated the median DE score of each gene. Then, we gathered the top
1000 genes with the highest medians. For MAST and DEseq, we gathered the
top 1000 genes with the lowest FDR adjusted p-values of only one run.
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Fig. 2. Intersections of the top 1000 DEG (CD4 vs. CD8 analysis). Matrix dots specify
method combinations; bars encode the number of DEG in common.

We can see that ext-ZINBayes and DEseq have almost 750 in common, which
was expected given that the two methods have essentially the same average AUC.
In fact, the pair has the largest intersection set out of all duos. DEseq has also
more genes in common with SIENA than any other method. This is curious
given that MAST and scVI show average AUC closer to SIENA’s. Furthermore,
all two method combinations considering SCDE have the lowest number of genes
in common, when compared with the other two methods combinations. The same
happens for three, four, and five method combinations. Moreover, if we consider
all methods except SCDE, the number of genes in common goes from 92 to
361; it increases almost four times, whereas if one of the other methods is not
considered, it only increases to values between 97 and 116. The only method
that comes close to identify the same DEG as SCDE is SIENA, yet the number
of genes in common is just a bit over 25%.

After gathering a DE ranking, the next step in any DE analysis is to perform
enrichment analysis to extract biological meaning. As such, it is important to
compare the biological features outlined by each method’s list. To do so, we
used the STRING [17] platform to compare the gene ontologies enriched by the
top DEG of each method under the B vs. Dendritic analysis. For SIENA, ext-
ZINBayes, scVI, and SCDE, we calculated the median DE score of each gene
over the 50 runs considered in Fig. 1b. Then, we used the medians to rank the
genes in descending order. For MAST and DEseq, we used the rank of one run.

For the ground truth (Limma’s) rank, 18 GO terms were considered signifi-
cantly enriched, i.e., had an enrichment FDR corrected p-value ≤ 0.01. SIENA’s
rank led to 73 terms, ext-ZINBayes to 62, DEseq to 56, MAST to 41, and scVI
to 31. Figure 3 illustrates for each method, the enrichment score of a set of GO
terms. From the heatmap, we can see that the top 10 GO terms for SIENA
and ext-ZINBayes are the same as for the ground truth list. However, the scores
related to ext-ZINBayes are greatly higher. Even though DEseq has one differ-
ent term, it has a closer score signature to the ground truth than ext-ZINBayes.
Out of all methods, scVI shows the most divergent GO pattern. Notwithstand-
ing, all methods seem to detect DEG connected to biological terms like myeloid
leukocyte activation and leukocyte/myeloid cell activation involved in immune
response, meaning that differences between B and Dendritic cells are probably
related with such processes.
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Fig. 3. GO enrichment analysis for each method (B vs. Dendritic test). Each term is
one of the 10 most significantly enriched terms of at least one method.

In both SIENA and ext-ZINBayes, configurations without zero-inflation lead
to better results in the two real datasets, in contrast with what research has
assumed throughout the years. Nonetheless, as we stated before, the authors
in [16] disproved this assumption for droplet-based data, thus supporting our
findings regarding the PBMC dataset. Even though the authors affirm that
in the case of plate-based counts zero-inflation mechanisms are necessary, our
results with the Islam counts may refute such conclusions, since that dataset has
probably a plate-based origin due to its small number of cells (< 100).

Comparing to existing methods, SIENA was able to detect more accurately
the DEG in both PBMC and Islam analysis. In addition, SIENA exhibited the
most consistent behaviour over the three real data tests, showing average AUC
ranging from 65% to 78%. All the other methods presented more fluctuating
performances when dealing with different types of datasets. This means that
SIENA is more adequate to deal with both small and large datasets than some
state-of-the-art methods. Moreover, SIENA is able to scale its memory usage
during both inference and DE test computation without decreasing its overall
accuracy, a crucial feature given the exponential growth of data size.

Of the two proposed methods, SIENA shows overall rankings more correlated
with the ground truth rankings. Moreover, in pair with DEseq, SIENA leads to
biological conclusions closer to the ones drawn from the ground truth. Taking
all this into account, we can conclude that only SIENA is able to compete with
state-of-the-art procedures, managing to assemble more truthful DE scores in a
more feasible amount of time.

4 Conclusion

We proposed two new Bayesian probabilistic procedures to assess DE. Both are
built upon LVMs and DE mechanisms. Ext-ZINBayes adopts an existing prob-
abilistic model designed for dimensionality reduction. It performs DE analysis
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using some of the model’s latent variables. SIENA devises a novel model, lever-
aging certain assumptions taken in state-of-the-art methods. Of the two proce-
dures, SIENA yields the best results, being very competitive regarding existing
approaches. Both methods could benefit from improvements; ext-ZINBayes can
be upgraded with the use of inference networks, whereas a new gene dispersion
optimization mechanism may speed SIENA’s inference. Another potential future
work would be to integrate SIENA with some batch removal method designed
specifically for scRNA data, in order to compute the Bayes factors without con-
straining the cell pairs by batch. One option is to employ batch correction by
matching mutual nearest neighbors. Finally, both models can be used to devise
some fold-change metric, possibly generating more accurate DE scores.
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Abstract. The variation in gene expression profiles of cells captured in
different phases of the cell cycle can interfere with cell type identification
and functional analysis of single cell RNA-Seq (scRNA-Seq) data. In this
paper, we introduce SC1CC (SC1 Cell Cycle analysis tool), a compu-
tational approach for clustering and ordering single cell transcriptional
profiles according to their progression along cell cycle phases. We also
introduce a new robust metric, Gene Smoothness Score (GSS) for assess-
ing the cell cycle based order of the cells. SC1CC is available as part of
the SC1 web-based scRNA-Seq analysis pipeline, publicly accessible at
https://sc1.engr.uconn.edu/.

Keywords: scRNA-Seq · Cell cycle · Cell order · Gene smoothness
score

1 Background and Motivation

The variation in gene expression profiles of single cells that are captured in dif-
ferent phases of the cell cycle can interfere with cell type identification and func-
tional analysis of single cell transcriptomic data. In particular, it is important
to differentiate between cell type and cell cycle effects when analyzing single cell
RNA-Seq data. A first challenge in the computational analysis of cell cycle effects
in single cell transcriptomics is to differentiate between cells that are actively pro-
liferating and those that are quiescent, i.e., cells that do not actively divide but
retain the ability to re-enter a proliferative state. A second computational chal-
lenge is to correctly label individual cells or cell clusters according to their phase
in the cell cycle. The main cell cycle phases are G1 (where metabolic changes
prepare the cell for division), S (where DNA synthesis replicates the genetic
material), G2 (where molecular components needed for mitosis and cytokinesis
are assembled), and M (where a nuclear division followed by cytokinesis occurs),
although transition phases G1/S and G2/M are also commonly identified [4].
Such cell labels coupled with existing biological knowledge of genes associated
with each of the cell cycle phases can assist functional analysis of single cell
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transcriptional profiles and interpretation of unsupervised scRNA-Seq cluster-
ing results. Finally, a third computational challenge is to order individual cells
according to their progression along the cell cycle.

Although there are several existing methods for cell cycle analysis of single
cell RNA-Seq data, most of them attempt to address one of the above-mentioned
challenges in isolation. Our proposed SC1CC method enables a comprehensive
analysis of the cell cycle effects that can be performed independently of cell
type/functional annotation, hence avoiding hazardous manipulation of the single
cell transcription data that could lead to misleading analysis results. Specifically,
SC1CC can be used to distinguish proliferating from quiescent cells and provides
the ability to annotate cell populations based on the cell cycle phase. Additionally,
the cells are also ordered based on their progression along the cell cycle phases.

In the remainder of this section we briefly review some representative meth-
ods for individually addressing the above challenges in cell cycle analysis of
scRNA-Seq.

ccRemover. The ccRemover tool [2] attempts to remove the cell-cycle effects
from the single cell transcriptional profiles. This is done by identifying those
principal components that, based on their loadings, capture mostly cell cycle
effects in a low dimensional principal component analysis (PCA) projection of
the scRNA-Seq data. Subtracting these components is expected to enhance gene
expression variation due to differences in cell type. We performed an initial
test to determine the effectiveness of ccRemover at removing cell cycle effects
by running it with default settings on a dataset consisting of a 50%–50% mix-
ture of Jurkat and 293T single cells that was previously profiled using the 10x
Genomics droplet-based scRNA-Seq platform. This dataset is comprised of cells
of two different types (T lymphocyte and human embryonic kidney cells) that
are well separated according to their original scRNA-Seq profiles (Fig. 1a). How-
ever, after processing the scRNA-Seq data using ccRemover the two cell types
appear nearly indistinguishable in the 3D t-SNE (t-Distributed Stochastic Neigh-
bor Embedding) plot (Fig. 1b). This suggests that attempting to subtract the
cell cycle signal using ccRemover without careful parameter tuning could result
in inadvertently subtracting the cell type signal. For this reason, ccRemover was
not included in further method comparisons in this paper.

Cyclone. Cyclone [16] uses a classification algorithm based on selecting pairs
of genes whose relative expression has a sign that changes with the cell-cycle
phase in the training data. The learned gene pairs are used to quantify the
evidence that a given cell is in one of three cell cycle phases (G1, S, or G2M).
Specifically, under the recommended approach, Cyclone calculates for each cell
a score between 0 and 1 for two of these phases, G1 and G2M. Cells with G1
or G2M scores above 0.5 are assigned to the G1 or G2M phases, respectively (if
both scores are above 0.5, then the higher score is used to make the assignment).
Cells with both G1 and G2M scores below 0.5 are assigned by default to the
S phase. The method allows users to override these thresholds, but we used
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Fig. 1. ccRemover effect on data variability. (a) 3D t-SNE plot of Jurkat-239T
data (Blue and red colors distinguish the Jurkat and 239T cells respectively). (b) 3D
t-SNE plot of the Jurkat-293T dataset after applying ccRemover with default settings.
As in [19] we inferred the cluster/library labels based on the expression of cell type-
specific markers, The blue cluster corresponds to Jurkat cells (preferentially expressing
CD3D), and red corresponds to 293T cells (preferentially expressing XIST, as 293T is
a female cell line, while Jurkat is a male cell line).

the recommended thresholds in our experiments. In Sect. 3 we present results
comparing the accuracy of cell cycle labels inferred by Cyclone to those generated
by SC1CC using datasets with both known and unknown cell cycle phase labels.

reCAT. The reCAT method [12] takes a different approach to cell cycle anal-
ysis. Rather than labeling the cells with an inferred cell cycle phase, reCAT
attempts to order the cells in a manner consistent to their position along the
cell cycle. The cell ordering problem is computationally modeled as a traveling
salesman problem (TSP). First, reCAT performs normalization of the data fol-
lowed by clustering of the cells. It then orders the identified clusters by finding
a traveling salesman cycle. It also computes for each cell two scores (a Bayes
score and a mean score) that differentiate between the cell cycle phases. Finally,
a hidden Markov model (HMM) and a Kalman smoother are used to estimate
the underlying gene expression levels of the ordered single cells. The results of
experiments comparing the order reconstructed by reCAT to the order identified
by SC1CC are presented in Sect. 3.

2 Methods

2.1 Datasets

In addition to the Jurkat-239T dataset described in Sect. 1 we used four other
datasets to further evaluate the performance of SC1CC and existing cell cycle
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analysis tools. These datasets were selected to span a broad range of cell cycle
related modalities. For example, all cells in the Human Embryonic Stem Cells
(hESC) dataset are expected to be proliferating, whereas the Peripheral blood
mononuclear cells (PBMC) dataset is expected to consist solely of quiescent cells
[19]. The immune cells from anti-CTLA-4 treated mice (α-CTLA-4) dataset and
the mouse Hematopoietic Stem Cells (mHSC) are both expected to contain a
mix of quiescent and proliferating cells.

The cells of the hESC dataset have labeled cell cycle phase annotations, while
for the α-CTLA-4 and mHSC datasets only the percentage of proliferating cells
was established in the original publications.

Basic quality control (QC) was uniformly applied to each of these datasets,
whereby cells expressing less than 500 genes as well as genes detected in less than
10 cells were filtered out. Pre-processed versions of all datasets are accessible
as example datasets for the SC1 web-based scRNA-Seq analysis pipeline [13],
publicly available at https://sc1.engr.uconn.edu/.

Human Embryonic Stem Cells (hESC, Cycling Cells). There are very
few scRNA-Seq datasets where the cell-cycle phase of each cell is known a priori.
For this work, we used a labeled dataset of undifferentiated H1 human embry-
onic stem cells (hESCs) from [11]. Fluorescent ubiquitination-based cell-cycle
indicator H1 (H1-Fucci) human embryonic stem cells were sorted according to
the G1, S, and G2/M cell cycle phases by fluorescence activated cell sorting
(FACS). Full-length scRNA-Seq data was generated for a total of 247 H1-Fucci
cells (91 G1, 80 S, and 76 G2/M cells, respectively) captured using the Fluidigm
C1 microfluidic platform.

Peripheral Blood Mononuclear Cells (PBMC, Non-cycling Cells). The
PBMC dataset is comprised of a mixture of mature FACS-sorted dendritic cells,
natural killer, B and T cells from a healthy donor from [19] and further ana-
lyzed in [14]. This dataset consists of 2,882 cells randomly sampled from seven
PBMC sub-populations independently sorted by FACS. scRNA-Seq data for
these cells was generated using the 10x Genomics droplet-based platform and
the 3′-end v1 protocol, as described in [19]. Figure 2a shows a 3-dimensional t-
Distributed Stochastic Neighbor Embedding (t-SNE) plot of the PBMC dataset
and the breakdown into the seven cell types. Since PBMCs typically differen-
tiate in the thymus or lymph nodes, this dataset is expected to contain only
non-cycling cells.

Tumor Infiltrating Immune Cells from Anti-CTLA-4 Treated Mice
(α-CTLA-4, Mixture of Cycling and Non-cycling Cells). This dataset
(publicly available in the NCBI GEO database under accession GSM3371686)
was also generated using the 3′-end v1 scRNA-Seq protocol on the 10x Genomics
platform. CD45+ cells were sorted by FACS from cell suspensions of dissoci-
ated tumors excised from mice treated with 9D9, an anti-CTLA-4 antibody, as

https://sc1.engr.uconn.edu/
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Fig. 2. 3-dimensional t-SNE plots of the PBMC, α-CTLA-4 and mHSC
datasets. (a) 3D t-SNE plot of the 10x Genomics PBMC dataset consisting of 2,882
cells randomly sampled from seven PBMC sub-populations independently sorted by
FACS. (b) 3D t-SNE plot of the α-CTLA-4 dataset consisting of 992 lymphoid (blue)
and 2156 myeloid cells (red). The ‘ki67-Hi’ cells (black) are a mixture of proliferating
CD4+ T cells, CD8+ T cells, Tregs, and NK cells (≈17.5% of the lymphoid cells). (c)
3D t-SNE plot of the mHSC dataset consisting of a total of 1,277 MPP, ST-HSC, and
LT-HSC cells, further grouped by the age of the mice (young and old).

described in [7]. According to the analysis in [7], this dataset, henceforth referred
to as α-CTLA-4, consists of 992 lymphoid and 2,156 myeloid cells. Notably, the
unsupervised clustering analysis of the α-CTLA-4 dataset in [7] has identified
a cluster, labeled ‘Mki67-Hi’, comprised of a mixture of proliferatingCD4+ T
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cells, CD8+ T cells, Tregs, and NK cells (≈17.5% of the lymphoid cells, see
Fig. 2b). Thus, this dataset is well suited for assessing the ability of our method
to correctly differentiate between quiescent and proliferating cells.

Short- and Long-Term Mouse Hematopoietic Stem Cells from Young
and OldMice (mHSC, Mixture of Cycling and Non-cycling Cells). This
scRNA-seq dataset (1,277 cells after applying QC) is publicly available in the
NCBI GEO database under accession GSE59114. The dataset was used in [9] to
dissect the variability in hematopoietic stem cell (HSC) and hematopoietic pro-
genitor cell populations from young and old mice. A 3D t-SNE projection of the
mHSC dataset is shown in Fig. 2c. Based on the analysis in [9], this dataset is
comprised of cells of three different types – Multipotent Progenitor Cells (MPP),
short-term hematopoietic stem cell (ST-HSC), and long-term hematopoietic stem
cell (LT-HSC) – that are further grouped by the age of the mice (young and old).
The six cell populations are thoroughly analyzed in [9] with regards to cell cycle
effect on differentiation while aging. We use the findings of this analysis as the
ground truth for evaluating the performance of our approach. Specifically, the
computational and biological analysis in [9] identifies 65% of all cells analyzed as
non-dividing and estimates an equal percentage of proliferating cells in young and
old mice for MPP and ST-HSC cells but not for LT-HSCs (of which old mice have
fewer dividing cells). The analysis in [9] also estimates the percentages of cells in
G1, S and G2M phases as 20%, 6% and 9% of the total, respectively.

2.2 The SC1 Cell Cycle (SC1CC) Analysis Tool

A repeated observation in single cell RNA-Seq data analysis is that a bias can
be introduced by cell cycle effects. Indeed, such effects result in significant factor
loadings of annotated cell cycle genes to the first few principal components for
many scRNA-Seq datasets. Furthermore, it has been shown that the first few
principal components obtained by using expression levels of annotated cell cycle
genes are sufficient for capturing cell to cell similarities and the covariance due
to cell cycle effects [2,3,5,11,16]. We leverage this observation in SC1CC and
start by computing the first few principal components (PCs) for the sub-matrix
of normalized scRNA-Seq counts comprised of cell cycle genes only.

The SC1CC implementation available at https://sc1.engr.uconn.edu/ allows
users to select one of three different gene lists: the genes annotated with the “cell
cycle” term (GO:0007049) in the Gene Ontology database [6], genes included in
the Cyclebase 3.0 database of cell cycle related genes [15], and finally the list
of periodic genes identified from single cell data in [5]. All results in this paper
are based on the GO-annotated cell cycle gene unless otherwise indicated. The
selected list of cell cycle genes is further filtered based on the gene expression
values in the current dataset in order to keep only those expressed genes that
have a correlation higher than α to at least one other cell cycle gene. The purpose
of this step is to remove genes that – although annotated as cell cycle genes – do
not have expression levels correlated with that of other cell cycle genes, and hence

https://sc1.engr.uconn.edu/
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might represent outliers. All experiments reported in Sect. 3 were generated using
the default value of 0.25 for α.

Since using a large number of PCs can add unnecessary noise to subsequent
analysis steps, by default SC1CC automatically determines the number of rele-
vant PCs by assessing the drop in variance explained for each pair of consecutive
principal components. The online SC1CC implementation allows users to man-
ually specify the number of PCs if desired. The principal component analysis
is followed in SC1CC by a 3-dimensional t-SNE projection using the identified
principal components. Performing t-SNE based dimensionality reduction using
the main PCs aims to capture the local similarity of the cells without sacrificing
the global variation already captured by the PC analysis. Next, the cells – now
identified by their representation in t-SNE space – are clustered into a hierar-
chical structure (dendrogram) based on their Cosine similarity. Unless otherwise
indicated all results reported in the paper are based on using hierarchical clus-
tering with average linkage; the online SC1CC implementation also allows users
to select between average linkage and Ward’s method.

Since the cell cycle is typically divided into 6 distinct phases (G1, G1/S, S,
G2, G2/M, and M, see, e.g., [4]), by default SC1CC attempts to extract up to
7 clusters from the hierarchical clustering dendogram – corresponding to the 6
cell cycle phases plus at least one potential cluster of non-cycling cells – with
a minimum cluster size threshold of 25 cells. The maximum number of clusters
can be modified by the user in the online implementation of SC1CC, which also
includes an ‘auto’ option for determining the optimal number of clusters based
on the Gap Statistics Analysis algorithm from [17].

Finally, to generate an order of cells consistent to their position along the cell
cycle, SC1CC reorders the leaves of the hierarchical clustering dendogram (cor-
responding to the individual cells) by using the Optimal Leaf Ordering (OLO)
algorithm [1] as implemented in [8]. Performing additional leaf-node reordering
is equivalent to minimizing the length of a Hamiltonian path [1]. For n cells,
the dendrogram produced by the hierarchical clustering algorithm (essentially a
rooted binary tree) has n − 1 internal nodes and 2n−1 possible leaf orderings.
That is, at each internal node the left and right subtrees can be independently
flipped or not. The OLO algorithm produces a leaf ordering that minimizes the
sum of distances between adjacent leaves. The time complexity of the implemen-
tation in [8] is O(n3), and its practical performance as part of SC1CC is further
improved since the pairwise distances between cells are already available from
the distance based hierarchical clustering step.

Cluster Mean-Scores. Six groups of genes (G1, G1/S, S, G2, G2/M, and M
genes, respectively) are formed by including cell cycle genes that are known to
reach their peak expression in the corresponding cell cycle phases [12]. For each of
these genes and each cell, a ‘z-score’ is computed by subtracting the gene’s mean
expression level from the expression level of the gene in the cell and then dividing
by the gene’s standard deviation. For each group of genes and each cluster identi-
fied during the hierarchical clustering step we compute a mean-score by averaging
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over cells in the cluster and genes in the group. The maximum mean-score of a clus-
ter is used to determine its cell cycle phase. Note that with this procedure multiple
clusters can be labeled with the same cell cycle phase, and some cell cycle phases
may not be assigned as labels to any of the clusters. Also, since a mean-score of
each gene group corresponding to each of the cell cycle phases can be calculated for
each identified cluster, the maximum mean-score is relative between gene groups
of different cell cycle phases and can only indicate a potential cell cycle phase des-
ignation. We therefore introduce in next sub-section an independent metric that
can be used to distinguish dividing from non-dividing cells.

Gene-Smoothness Score (GSS). Normalized gene scores computed as above
or as defined by reCAT [12] or Cyclone [16] are relative between cell cycle phases
and cannot distinguish clearly, if at all, between cycling vs. non-cycling cells or
provide a useful metric for assessing cell orderings. We therefore propose a novel
metric, referred to as Gene-Smoothness Score (GSS), based on serial correlation,
i.e., the correlation between a given variable and a lagged version of itself. The
GSS can be computed for any ordered group of cells and can help to directly
assess the suggested cell order. Strengths of this metric include the fact that
the cells do not need to have known cell-cycle labels and that no specific model
assumptions are required for the marker gene expression (whether binary, bi-
modal, sinusoidal, etc.). Our experiments also indicate that the GSS results are
relatively insensitive to the choice of annotated cell cycle genes, hence the GSS
can be useful even when a “perfect” annotation is not available.

The GSS of an ordered cluster/group c of cells is defined as

GSS(c) = Median
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where N is the number of annotated cell cycle genes, SCord(gi) denotes the
first-order serial correlation of gene i with respect to the given cell order, and
SCrandj

(gi), j = 1, . . . , R, denote the first-order serial correlation of gene i with
respect to R randomized cell orders (we use R = 50 in all experiments). The first-
order serial (or auto-) correlation is the correlation value between a given gene
expression vector and a version of itself shifted by one position. Serial correlation
is a value between −1 and 1. First-order serial correlation near 0 implies that
there is no overall correlation between adjacent data points. On the other hand,
a first-order serial correlation near 1 suggests a smoothly varying series, while a
first-order serial correlations near −1 indicates a series that alternates between
high and low values. Because individual cell cycle genes can be expressed in
different patterns throughout the cell cycle phase transitions, and even abruptly
switch direction when the assessed cluster includes mostly cells in one of the
transient cell cycle phases (G1/S or G2/M), we define GSS as the median (over
all cell cycle genes) of the absolute differences between the serial correlation of
a gene’s expression values ordered according to the given cell ordering and the
average serial correlation computed over R randomized orders.
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A cluster/group of cells is considered to be cycling/dividing when its GSS
is greater than an error margin ε (default 0.05), i.e., when at least 50% of the
genes have an absolute difference in serial correlations between randomized order
and identified cell cycle order of at least 0.05. The value of the error margin is
set to 0.05 by default but can be adjusted by the user in the online SC1CC
implementation. The GSS score is more robust with a higher number of cells
per cell cycle cluster, as the chance of a random order producing spurious auto-
correlation and therefore high GSS scores is lower when more data points are
included in the series.

Figure 3 provides examples of cell cycle genes that contribute positive values
to the GSS score in the hESC dataset and illustrates their expression values for
both SC1CC and randomly ordered cells. The online implementation of SC1CC
allows the user to select any cell cycle gene of interest and examine its normal-
ized expression levels along the inferred order. In Figure 3, gray dots represent
normalized gene expression values for individual cells, while the red and blue
curves represent the fitted local polynomial regression of these values for the
SC1CC and a random cell order, respectively. As expected, the fitted expression
lines under random ordering of the cells convey no recognizable pattern and stay
nearly flat close to an altitude of 0. In contrast, the SC1CC cell order results
in fitted curves that appear to peak at different positions, consistent with these
gene’s involvement in different cell cycle phases.

3 Results and Discussion

3.1 Results on the hESC Dataset

The cell order inferred by SC1CC’s OLO algorithm and the cell cycle order
reconstructed by reCAT are shown in Fig. 4a. SC1CC groups together almost

Fig. 3. Example cell cycle genes in the hESC dataset. Normalized expression
levels for select cell cycle genes and cells ordered by SC1CC (red) vs. a shuffled cells
order (blue). Different cell cycle genes follow different patterns of expression along
the cell cycle phases. Given the SC1CC inferred cell order, which reflects the cells’
progression through the cell cycle, different patterns for individual cell cycle genes can
be seen for different genes associated with the cell cycle, including Mki67, Ube2c, Ccne2
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Fig. 4. Cell cycle analysis of the hESC dataset. (a) hESC cells orders inferred by
SC1CC and reCAT. Experimentally determined cell labels are color coded as library
IDs. SC1CC groups the majority of cells from each phase together (G1 in red, G2 in
blue, and S in orange), whereas only G1 cells are grouped together in the reCAT order.
(b) Heatmap of log2(x+1) expression values of cell cycle genes for the hESC cells using
‘GO:0007049’ gene list ordered according to SC1CC. Colors in the top barlabeled ‘CC
Clusters’ represent the identified cell cycle clusters according to SC1CC, whereas the
colors in the ‘Library IDs’ bar of the heat map indicate the cell cycle phases determined
by FACS. (c) GSS for the three clusters identified by running SC1CC on the hESC
cells. (d) Mean-scores for each of the three clusters identified by SC1CC and each of
the six considered cell cycle phases.

all cells labeled with the same phase. Although the reCAT order maintains the
grouping of G1 cells, cells from S and G2 phases are highly interleaved in this
order. The SC1CC order also has a higher GSS score of 0.0632 compared to
0.0519 for the reCAT order.

Figure 4b displays the heat map of log2(x + 1) expression values of cell cycle
genes for the hESC cells ordered according to SC1CC. Colors in the top bar
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labeled ‘CC Clusters’ represent the identified cell cycle clusters according to
SC1CC, whereas the colors in the ‘Library IDs’ bar of the heat map indicate
in this case the cell cycle phases determined by FACS. Note that the colors for
library IDs and inferred cell cycle clusters are assigned independently from the
same color palette in our online implementation and therefore are not necessarily
in one-to-one correspondence. The heat map in Fig. 4b was generated by run-
ning SC1CC using the set of genes associated with the GO term “Cell Cycle”
(GO:0007049). The hierarchical clustering algorithm implemented by SC1CC
identifies three clusters. The GSS scores (Fig. 4c) for the three clusters were
0.0775, 0.0683, and 0.0754, respectively, indicating that all clusters consist of
dividing cells, as expected.

Figure 4d gives the mean scores for each of the three clusters identified by
SC1CC and each of the six considered cell cycle phases. Based on majority
matching of cell labels determined by FACS, the three clusters are comprised
of cells in the S, G1, and G2 phases, respectively. Albeit not perfect, the clus-
ter assignments based on peak mean scores have good agreement. Specifically,
cluster 1 (consisting of S phase cells according to the FACS labels) has very
close highest mean scores for the G1S and S phases, with the G1S score slightly
higher. Cluster 2 (G1 according to FACS) has two close highest scores for G1
and M phases, with the G1 score slightly higher. Finally, cluster 3 (G2 according
to FACS) has two close highest mean scores for the G2 and G2M phases, with
the G2M score slightly higher. The relatively low number of cells as well as the
limited resolution of the ground truth labels are both likely contributing factors
to the near-ties in peak score assignments for the three clusters.

In Table 1 we compare the clusters (cell labels) generated by Cyclone with
the clusters inferred by SC1CC using different cell cycle gene sets for the hESC
dataset. We assess clustering accuracy using the macro and micro-accuracy mea-
sures from [10] and [18], defined as:

Micro Accuracy =
K∑

i=1

Ci/
K∑

i=1

Ni (2)

Macro Accuracy =
1
K

K∑

i=1

Ci

Ni
(3)

where K is the number of classes, Ni is the size of class i, and Ci is the number
of correctly labeled samples in class i relative to the ground truth.

Both Cyclone and SC1CC cluster the cells with high accuracy, with Cyclone
scoring slightly higher. As detailed in Sect. 2.2, SC1CC gives the user the choice
to use three different lists: genes included in the Cyclebase 3.0 database [15],
genes annotated with the “cell cycle” term (GO:0007049) in the Gene Ontology
database [6], and the list of periodic genes identified from single cell data in
[5]. As can be seen in Table 1, the genes associated to the term “Cell Cycle”
(GO:0007049) from the The Gene Ontology (GO) database achieve slightly
higher clustering micro- and macro-accuracy for the hESC dataset compared
to the other two gene sets.
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Table 1. Clustering accuracy for Cyclone and SC1CC run with three different gene
lists on the hESC dataset.

Cyclone SC1CC

Cyclebase 3.0 GO Periodic Genes

G1-Phase 1.000 0.9890 0.9890 1.000

G2-Phase 0.9342 0.7895 0.9605 0.8290

S-Phase 1.000 1.000 0.9125 0.9875

Micro accuracy 0.9798 0.9312 0.9555 0.9433

Macro accuracy 0.9781 0.9262 0.9540 0.9388

3.2 Results on the PBMC Dataset

As described in Sect. 2.1, the PBMC dataset is expected to include mostly non-
dividing cells, which is confirmed by the results of the SC1CC analysis. Figure 5a
shows the heat map of the PBMC cells featuring the GO cell cycle related genes
that are expressed in the dataset (using log2(x+1) expression) and the clustering
obtained by SC1CC. The majority of the genes have low expression levels in most
cells. Furthermore, the GSS scores of all clusters fall below the 0.05 cutoff and
hence they are all labeled as non-dividing by SC1CC (Fig. 5b), as expected.
Cyclone labels 2,192 of the 2,882 cells in the PBMC dataset as G1, 398 as G2M,
and 292 as S phase cells, underscoring the need for a separate analysis step to
determine if the cells are actually cycling.

3.3 Results on the α-CTLA-4 Dataset

As discussed in Sect. 2.1, the α-CTLA-4 dataset is expected to include a mix
of dividing and non-dividing cells. This is the most likely scenario for many
scRNA-Seq datasets where no knowledge of the cell cycle effect within the data
is available a priori. We reasoned that the best analysis approach for such data
is to perform a two stage analysis, where we first separate the dividing from the
non-dividing cells, followed by a detailed cell cycle analysis of the potentially
dividing cells identified in the first step. Indeed, after clustering and ordering
the cells using SC1CC, we are able to distinguish the potentially dividing cells
by their GSS score. Figure 6a shows the log2(x + 1) expression heat map of the
3,148 α-CTLA-4 cells passing the default QC described in Sect. 2.1 based on
the GO cell cycle genes and using the first 4 principal components. One cluster
(cluster 7 in light green color) consists of 193 cells that show markedly higher
expression levels for the cell cycle genes. Independent clustering analysis based
on full gene expression profiles performed using the SC1 pipeline shows that
cluster 7 is comprised mostly of lymphoid cells (light blue in the horizontal bar
labeled “Clusters” in the heat map). This cluster has the highest GSS score,
exceeding the SC1CC detection threshold for dividing cells, as shown in Fig. 6b.
Indeed, this cluster closely matches the “Mki67-Hi” cluster identified in [7] as
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Fig. 5. Cell cycle analysis of the PBMC dataset. Heat map and cell order (a)
along with GSS scores for the clusters inferred by SC1CC (b) on the PBMC dataset.
GSS scores for all clusters fall below a cutoff of 0.05 and are labeled as non-dividing
by SC1CC.

consisting of highly proliferative lymphoid cells. Further SC1CC analysis of the
193 cells in this cluster based on the Cyclebase 3.0 gene list reveals three sub-
clusters (Fig. 6c), all of which are found to be actively dividing according to
GSS scores (Fig. 6d). Cell cycle phase assignments based on maximum mean-
scores suggests that the three sub-clusters consist of cells in the M, S, and G1S
phases, respectively (Fig. 6e). For the sake of completeness we also tested Cyclone
classification method on the of the 3,148 α-CTLA-4 cells, and 2,957 cells were
labeled as G1, 149 were labeled as G2M, and 42 were labeled as S phase cells.

3.4 Results on the mHSC Dataset

As discussed in Sect. 2.1, this dataset also includes a mix of dividing and non-
dividing cells. As with the α-CTLA-4 dataset analysis, we followed a two stage
SC1CC analysis approach, where we first separate the dividing from the non-
dividing cells, followed by a detailed cell cycle analysis of the potentially dividing
cells identified in the first step. In excellent agreement with the percentages
reported in [9], the first analysis stage (Fig. 7a–b) places 472 of the 1,277 mHSC
cells (36.96%) in a dividing cluster with GSS score of 0.3075, and the remaining
cells in a non-dividing cluster with GSS score of 0.0285. Furthermore, as shown
in Table 2, the percentage of dividing cells identified by SC1CC among the three
cell types identified in [9] are indeed approximately equal in young and old mice,
with the exception of long term HSC, only 13% of which are dividing in old mice
compared to 35% in young mice.

The analysis in [9] ‘roughly’ estimates the percentage of cells in G1, G1/S
and G2M phases as 20%, 6% and 9% respectively. Following the second stage
of analysis, where cycling cells identified in first stage are further clustered and
assigned cell cycle phases based on peak mean scores (Fig. 7c–e), SC1CC iden-
tifies 217 cells (17% of total) as G1, 68 cells as G1/S (5.3% of total), and 187
cells as G2M (14.6% of total).
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Fig. 6. Cell cycle analysis of the α-CTLA-4 dataset. Heat map and cell order
(a) along with GSS scores for the clusters inferred by SC1CC (b) on the α-CTLA-4
dataset. The 193 cells in cluster 7 are further partitioned by SC1CC into 3 sub-clusters
(c), all of which are marked as actively dividing based on GSS scores (d). Mean-scores
for each of the three sub-clusters of dividing cells and each of the six considered cell
cycle phases are given in (e). Mean-scores for each of the three sub-clusters of dividing
cells and each of the six considered cell cycle phases are given in (e). The maximum
mean-scores of sub-clusters 1 (red), 2 (blue), and 3 (orange) are achieved for the M, S,
and G1/S phases, respectively.
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Fig. 7. Cell cycle analysis of the mHSC dataset. Heat map and cell order (a)
along with GSS scores for the clusters inferred by SC1CC (b) on the mHSC dataset.
The 472 cells in cluster 2 are further partitioned by SC1CC into 3 sub-clusters (c),
all of which are marked as actively dividing based on GSS scores (d). Mean-scores for
each of the three sub-clusters of dividing cells and each of the six considered cell cycle
phases are given in (e). The maximum mean-scores of sub-clusters 1 (red), 2 (blue),
and 3 (orange) are achieved for the G1, G2M, and G1/S phases, respectively.
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Table 2. The inferred numbers of dividing vs. non-dividing cells in the six cell popu-
lations of the mHSC dataset.

Non-Dividing Dividing % Dividing

Old mice MPP 34 144 80%

Young mice MPP 35 123 78%

Old mice ST-HSC 247 77 24%

Young mice ST-HSC 115 32 22%

Old mice LT-HSC 280 45 13%

Young mice LT-HSC 94 51 35%

4 Conclusion

In this paper we introduce SC1CC, a novel method for clustering and ordering
single cell transcriptional profiles according to their cell cycle phase. The main
contributions include a novel technique for ordering cells based on hierarchical
clustering and optimal leaf ordering, and a new GSS metric based on serial corre-
lation for assessing gene expression change smoothness along a reconstructed cell
order as well as differentiating between cycling and non-cycling groups of cells.
While many of the existing methods focus on a specific aspect of scRNA-Seq
cell cycle analysis (e.g., assigning phase labels, ordering the cells, or removing
the cell cycle contribution to gene expression), SC1CC is, to our best knowledge,
the first method that enables a comprehensive analysis of the cell cycle effects,
addressing four complementary analysis aspects. SC1CC differentiates between
dividing and non-dividing cells, clusters the cells based on cell cycle effects inde-
pendently from cell type effects, while also assigning cell cycle phases to the
resulting clusters and ordering the cells based on their progression along the cell
cycle phases. SC1CC has been implemented in R and deployed via a user-friendly
interactive interface as part of the SC1 scRNA-Seq analysis pipeline [13], freely
accessible at https://sc1.engr.uconn.edu/.

Empirical evaluation experiments on a diverse set of real scRNA-Seq datasets
show that the GSS robust evaluation metric which allows distinguishing with
high accuracy between dividing and non-dividing cells based on minimal assump-
tions about the underlying cell cycle gene expression changes. In direct compar-
isons with the existing specialized tools, SC1CC also achieves similar or better
accuracy for clustering the cells according to cell cycle phases or ordering them
according to the progression along the cell cycle phases. Importantly, SC1CC
analysis is performed orthogonally to cell type identification, avoiding poten-
tially artifacts of sequential analysis advocated in [2].
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Abstract. The efficiency of antimalarials, chloroquine (CQ) and hydroxychloro-
quine (HCQ), in the prevention and treatment of coronavirus disease 2019
(COVID-19) is under intense debate. The mechanisms of action of antimalari-
als against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have
not been fully elucidated. Here, we applied a network-based comparative analysis,
implemented in our machine learning workflow—scTenifoldNet, to scRNA-seq
data fromCOVID-19 patients with different levels of severity.We found that genes
of the Malaria pathway expressed in macrophages are significantly differentially
regulated between patients withmoderate and severe symptoms. Our findings help
reveal the mechanisms of action of CQ and HCQ during SARS-CoV-2 infection,
providing new evidence to support the use of these antimalarial drugs in the treat-
ment of COVID-19, especially for patients who are mildly affected or in the early
stage of the infection.

Keywords: scRNA-seq ·Machine learning · Gene regulatory network ·
scTenifoldNet · SARS-CoV-2 · Antimalarial · Hydroxychloroquine

1 Introduction

The efficiency of chloroquine (CQ) and hydroxychloroquine (HCQ) in the prevention
and treatment of coronavirus disease 2019 (COVID-19) is under intense debate [1–5].
HCQ is the hydroxylated derivative of CQ; both are weak bases with a common flat
aromatic core structure and proven antimalarial drugs. HCQ is also widely used as
an immunomodulator to treat autoimmune diseases, especially systemic lupus erythe-
matosus (SLE) and rheumatoid arthritis (RA) [6]. CQ and HCQ are considered potent
candidates to treat infection of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2)—the etiological agent of the COVID-19 [7, 8]. Experimental studies suggest
that CQ and HCQ have the capability of inhibiting the replication of several intracellular
micro-organisms [9], including SARS-CoV-2 in vitro [10, 11]. Several human studies
have been conducted with both these drugs in COVID-19, and have shown significant
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improvement in some parameters in patients with COVID-19 [3, 12]. Although the use
of CQ and HCQ in COVID-19 treatment has been recommended, the link between the
mechanism of action of antimalarials and the mechanism of SARS-CoV-2 cellular infec-
tion is still missing. Without the link being established, how CQ and HCQ act against
SARS-CoV-2 will remain elusive.

2 Materials and Methods

2.1 Data Set

We downloaded a published single-cell RNA sequencing (scRNA-seq) data set [13] to
perform a transcriptomic comparative analysis between COVID-19 patients withmoder-
ate and severe symptoms. The scRNA-seq data was collected from cells in bronchoalve-
olar lavage fluid (BALF) from three patients with moderate and six patients with severe
infection symptoms [13]. We downloaded the raw data from the Sequence Read Archive
(SRA) database using accession number SRP250732 and processed the data to generate
scRNA-seq expressionmatrices. In the scRNA-seq data analysis, cells frompatientswith
moderate (M) and severe (S) symptoms were pooled into M and S groups for compari-
son. After performing the data quality control and cell clustering, we extracted 1,125 and
3,735 macrophages from cells of M and S groups, respectively (Fig. 1a). The identity
of macrophages was confirmed with marker genes including CD68 (Fig. 1b). We chose
to focus on macrophages due to the abundance of cells in the samples (77.4% of cells
are macrophages in the data) and the importance of lung macrophages contributing to
local inflammation, including recruiting inflammatory monocytic cells and neutrophils
and attracting T cells, as suggested in the original paper [13]. Toll-like receptor gene,
TLR2, was found to be highly expressed among macrophages in the S group (Fig. 1c).

2.2 Machine Learning Workflow

To systematically compare macrophage transcriptomes betweenM and S patient groups,
we employed a machine learning workflow—named scTenifoldNet (Fig. 1d), which we
developed to construct and compare single-cell gene regulatory networks (scGRNs)
[14]. scTenifoldNet is a machine learning framework that uses a comparative network
approach with scRNA-seq data to identify regulatory changes between samples. scTeni-
foldNet is composed of five major steps. (1) Cell subsampling. scTenifoldNet starts with
subsampling cells in the scRNA-seq expression matrices. Cells are subsampled either
randomly or following a pseudotime trajectory of cells. The subsampling is repeatedmul-
tiple times to create a series of subsampled cell populations. (2) Network construction.
The subsampled data matrices are subject to network construction and form a multilayer
single-cell gene regulatory network (scGRN). Principal component regression is used
for network construction; each scGRN is represented as a weighted adjacency matrix.
(3) Tensor denoising. The multilayer scGRN constructed from the subsampled data
matrices is treated as a three-order tensor, which is subsequently decomposed into mul-
tiple components. Top components of tensor decomposition are then used to reconstruct
denoised multilayer scGRN. The denoised multilayer scGRN is collapsed by taking
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average weight across layers. (4)Manifold alignment. Two denoised scGRNs: one from
the first sample and the other from the other sample to be compared, are aligned with
respect to common genes using a nonlinear manifold alignment algorithm. Each gene
is projected to a low-rank manifold space as two data points, one from each sample.
(5) Differential regulation test. The distance between the two data points is the relative
difference of the gene in its regulatory relationships in the two scGRNs. Ranked genes
are subject to tests for their significance in differential regulation between scGRNs. The
most important advantage of this network-based comparative analytical framework is its
sensitivity. We have shown that scTenifoldNet can detect differential regulatory patterns
between highly similar scRNA-seq samples to reveal gene regulatory changes, which
are undetectable otherwise [14].

3 Results and Discussion

We anticipated that, when applying scTenifoldNet to the scRNA-seq data of BALF
from COVID-19 patients, we could decipher the molecular complexity of the data to
achieve breakthroughs through constructing and comparing scGRNs in this cellular
system affected by SARS-CoV-2. Indeed, scTenifoldNet took two expression matrices
of M and S groups (containing 3,792 genes) as input and identified 27 highly differen-
tially regulated genes [false discovery rate (FDR)< 0.05]: BCAS4, ENO3, AD000091.1,
JSRP1, SNX32, ATG10, NOP16, CR759762.1, SMPD4, BEST1, KCP, CR388220.1,
DNAJC17, ABCB9, EME2, KIFC1, AL671277.1, UBXN11, CR759790.1, AL669813.2,
BX005428.2, BOLA2, PPT1, SH3D19, OR7C1, MFSD11, and FKBP15 (Fig. 1e, genes
are sorted according to the P-value significance; PPT1 and ABCB9 shown in bold are
genes found in the Lysosome pathway of KEGG database). scTenifoldNet also gener-
ated a ranked list of genes, including the aforementioned 27 highly significant genes and
all the rest of genes, sorted according to the significance of the scTenifoldNet test. We
analyzed the ranked gene list using pre-ranked Gene Set Enrichment Analysis (GSEA),
which is a method for determining whether any prior gene sets show statistical signifi-
cance with respect to a ranked gene list. The results of GSEA analysis showed that eight
pathway gene sets are highly significant (adjusted P-value < 0.05, Table 1). Among the
eight, the most informative one is the Malaria pathway from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database (Fig. 1e, inset). Thus, scTenifoldNet analysis
suggested that genes in the Malaria pathway are significantly differentially regulated
between M and S patient groups. We mapped expressed genes in our data set to the
KEGGMalaria pathway and highlighted genes highly expressed in severe patients with
red and lowly expressed with green (Fig. 1f). In the map, we found that TLR2/4 and
TGFB—two genes on the pathway leading to immunosuppression, and CXCL8,MCP1,
and IL1A—genes known to participate in the development of fever and metabolic aci-
dosis [15], are highly expressed in severely affected patients. Upregulated expression
of TLR2 in immune cells is also reported in patients affected with SLE [16], for which
HCQ is a drug for treatment.

Given that our machine learning workflow identified that the Malaria pathway-
related gene expression program is associated with different COVID-19 symptom sever-
ity, it is easy to conjure up the idea that antimalarials are potential candidates for treating
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early SARS-CoV-2 infection, especially when the symptom is less severe. Our reasoning
is further supported bymechanisms of action of CQ andHCQ—modulate cellular immu-
nity by suppressing immune cell function and reducing the secretion of pro-inflammation
cytokines [6, 17]. This idea is also supported by several other pathway gene sets identi-
fied by scTenifoldNet, which are differentially regulated betweenM and S groups. These
pathways include Cellular response to type I interferon (GO:0071357), Type I inter-
feron signaling pathway (GO:0060337), Antigen processing and presentation, Interferon
alpha/beta signaling Homo sapiens R-HSA-909733, andChemokine-mediated signaling
pathway (GO:0070098) (Table 1).

The significant pathway gene sets also include Phagosome and Endosomal/Vacuolar
pathway Homo sapiens R-HSA-1236977 (Table 1). These pathway gene sets, along
with PPT1 and ABCB9, the two highly significant genes that are also in the lysosome
pathway, suggest that different levels of symptom severity betweenM and S groups may
be associated with the lysosome function. These results further justify the use of CQ
and HCQ for COVID-19 treatment. An important mode of action of CQ and HCQ is
the inhibition of lysosomal activity [18]. CQ and HCQ are weak bases that are known

Table 1. Significant pathway gene sets identified using scTenifoldNet-ranked genes with GSEA
analysis.

Pathway P-value Adjusted
P-value

Size of
gene set

Five representative genes (i.e.,
leading edges of GSEA)

Type I interferon
signaling pathway
(GO:0060337)

8.62E−07 0.002 37 MX1, STAT1, ADAR, SAMHD1,
OASL

Antigen processing
and presentation

2.34E−05 0.02 35 IFI30, CD74, CTSB,
HLA-DQA1, CTSL

Malaria 1.57E−05 0.02 14 CCL2, TLR2, LRP1, PECAM1,
MYD88

Phagosome 8.57E−05 0.02 71 ACTB, HLA-DQA1, CTSL,
HLA-C, TAP1

Endosomal/Vacuolar
pathway Homo sapiens
R-HSA-1236977

4.55E−05 0.03 9 CTSL, HLA-C, HLA-A, HLA-B,
LNPEP

Interferon alpha/beta
signaling Homo
sapiens
R-HSA-909733

2.61E−05 0.03 38 MX1, STAT1, ADAR, SAMHD1,
OASL

Chemokine-mediated
signaling pathway
(GO:0070098)

2.85E−05 0.04 9 CCL2, CXCL10, CCL8, CCL7,
CXCL11

Cellular response to
type I interferon
(GO:0071357)

8.62E−07 0.002 37 MX1, STAT1, ADAR, SAMHD1,
OASL
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Fig. 1. Expression of genes in the Malaria pathway is differentially regulated in
macrophages fromCOVID-19 patients with moderate and severe symptoms. (a) t-distributed
stochastic neighbor embedding (t-SNE) plot of macrophages used in the data analysis. Cells are
colored according to the group of COVID-19 patients: moderate (blue) and severe (red). (b) Gene
expression level of CD68 indicatedwith bars (magenta) on t-SNE plot of cells. (c) Gene expression
level of TLR2. (d) scTenifoldNet workflow. (e) The quantile-quantile (q-q) plot for genes sorted
by the significance in the differential regulation test of scTenifoldNet. The expected and observed
fold-changes (FCs) between the distance of each gene’s two projections on the manifold and the
average distance are shown. Inset: GSEA result of Malaria pathway. (f) The Malaria pathway in
KEGG database is shown with genes differentially regulated and differentially expressed between
COVID-19 patients with moderate and severe symptoms highlighted. Genes with expression is
upregulated (or downregulated) in severely affected patients are highlighted in red (or green).
Five key genes: TLR2/4, TGFB, CXCL8 (i.e., IL8), MCP1, and IL1A (i.e., IL1), are further high-
lighted with an orange background in the pathway. A high-resolution image of this figure can be
downloaded at https://github.com/cailab-tamu/covid19-antimalarials-letter/raw/master/Fig1.pdf.

to elevate the pH of acidic intracellular organelles, such as endosomes and lysosomes,
essential for membrane fusion [19, 20]. If SARS-CoV-2 is internalized by receptor-
mediated endocytosis and delivered to lysosomes, the virus can be prevented by CQ and
HCQ that block function of the lysosome. In the presence of CQ andHCQ, SARS-CoV-2
viruses that require acidic pH to fuse with the cell membrane can no longer do so, and
thus cells are protected from infection.

https://github.com/cailab-tamu/covid19-antimalarials-letter/raw/master/Fig1.pdf
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Several caveats associated with this data-driven study need attention. The sample
size is small—only three samples from patients with moderate symptoms and six with
severe symptomswere considered. These samples are imbalancedwith respect to gender,
age, and other covariates. Moreover, a whole set of side effects of CQ and HCQ were
not assessed in this study.

4 Conclusion

In conclusion, we applied the network-based comparative analysis, implemented in our
machine learning workflow scTenifoldNet, to scRNA-seq data from COVID-19 patients
with different levels of severity.We found that genes of theMalaria pathway expressed in
macrophages are significantly differentially regulated between patients with moderate
and severe symptoms. Our findings help reveal the mechanisms of action of CQ and
HCQ during SARS-CoV-2 infection, providing new evidence to support the use of these
antimalarial drugs in the treatment of COVID-19, especially for patients who are mildly
affected or in the early stage of the infection. The code and data of our study are available
at https://github.com/cailab-tamu/covid19-antimalarials-letter.
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Abstract. Given the phylogenetic relationships of several extant
species, the reconstruction of their ancestral genomes at the gene and
chromosome level is made difficult by the cycles of whole genome dou-
bling followed by fractionation in plant lineages. Fractionation scram-
bles the gene adjacencies that enable existing reconstruction methods.
We propose an alternative approach that postpones the selection of gene
adjacencies for reconstructing small ancestral segments and instead accu-
mulates a very large number of syntenically validated candidate adjacen-
cies to produce long ancestral contigs through maximum weight match-
ing. Likewise, we do not construct chromosomes by successively piec-
ing together contigs into larger segments, but instead count all contig
co-occurrences on the input genomes and cluster these, so that chromo-
somal assemblies of contigs all emerge naturally ordered at each ances-
tral node of the phylogeny. These strategies result in substantially more
complete reconstructions than existing methods. We deploy a number of
quality measures: contig lengths, continuity of contig structure on suc-
cessive ancestors, coverage of the reconstruction on the input genomes,
and rearrangement implications of the chromosomal structures obtained.
The reconstructed ancestors can be functionally annotated and are visu-
alized by painting the ancestral projections on the descendant genomes,
and by highlighting syntenic ancestor-descendant relationships. We apply
our methods to genomes drawn from a broad range of monocot orders,
confirming the tetraploidization event “tau” in the stem lineage between
the alismatids and the lilioids.
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1 Introduction

Reconstruction methods depending on conserved gene adjacencies tend to break
down in plants, largely because the history of whole genome doubling and tripling
events (WGD and WGT, respectively) in the lineages of plants. All known flow-
ering plant genomes (except Amborella trichopoda [1]) have at least one, and
often several, WGDs or WGTs in their lineages since the ancestral angiosperm,
followed by extensive loss of redundant genes, largely randomly distributed along
one or other of the duplicated chromosomes. These processes effectively scram-
ble gene order and disrupt most adjacencies. Subsequently, most of the sets of
duplicate or triplicate genes created by WGD/WGT events are reduced sooner
or later to a single gene, by the redundance-eliminating process known as gene
fractionation. Because of this fractionation, duplication of a genome fragment
containing genes in the order 1-2-3-4-5-6, for example, may result in two surviv-
ing orders 1-3-5 and 2-4-6, with none of the five fragment-internal adjacencies
conserved, and only one adjacency at most conserved with the chromosomal
regions surrounding each copy of the fragment. The situation is compounded if
there are several WGD or WGT events in the history of some of the present-day
genomes. All this is superimposed on a background of gene family expansion
through tandem duplication or other mechanisms, and loss of genes from species
for which they are no longer physiologically or ecologically essential, genome rear-
rangement and other processes, all of which disrupt adjacencies independently
of the fractionation process.

For this paper, we developed a pipeline for ancestral plant genome inference,
RACCROCHE, Reconstruction of AnCestral COntigs and CHromosomEs, includ-
ing some intermediate ancestral genomes giving rise to major plant subgroup-
ings. The new strategy implemented in our approach combines six fundamental
components:

1. The replacement of the traditional selection of 1-1 orthologs among input
genomes, as a first step, by the identification of many-to-many correspon-
dences among gene families of limited size within these genomes.

2. The use of generalized adjacencies [17,18], namely any pair of genes close to
each other on a chromosome, instead of just immediately adjacent genes.

These first two components avoid premature decisions on which orthologies
and which adjacencies should be incorporated in the final reconstruction, in con-
trast to approaches which insist on making these decisions early in the recon-
struction process, e.g., [11].

3. The compilation of oriented candidate adjacencies at each of the ancestral
nodes of a given binary branching tree phylogeny using a “safe” criterion -
that such an adjacency must be evidenced in genomes in two or three of the
subtrees connected by this node, not just one or none.

4. The large set of these candidates is then resolved, at each node, by maximum
weight matching (MWM) to give an optimally compatible subset, which ipso
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facto defines linearly (or circularly) compatible “contigs” of the ancestral
genomes to be constructed, thus avoiding the branching segments that plague
other methods [14].

5. A local sequence matching, satisfying proximity and contiguity conditions,
of each contig on all of the chromosomes of the input genomes. This step
includes the construction of a total chromosomal co-occurrence matrix of
contigs belonging to each ancestral node.

6. A clustering applied to the co-occurrence matrix. This is then decomposed
into chromosomal sets of contigs, with the aid of a heat map comparison of
the contigs as organized by the clustering. Within each contig, the order of
the genes is already predetermined by the MWM step. Ordering the contigs
along the chromosomes is carried out by a linear ordering algorithm. The
assignment and ordering of contigs to construct entire chromosomes, and
not just a collection of small regions, is an advance over previous methods.
Corresponding chromosomes in different ancestral genomes can be identified
by the similar contigs they contain.

The results of this pipeline are mapped back to the input genomes, indicating
how these extant genomes were derived through chromosomal rearrangements
from their immediate ancestral genome.

We provide an evaluation of the reconstruction in terms of the sizes of the
ancient chromosomal fragments found, the coherence (or continuity) between
adjacent ancestral genomes, the coverage of the ancestors when mapped to extant
genomes, and the “choppiness” of this mapping in terms of ancestor-descendant
rearrangement.

There has been much recent work on the reconstruction of ancestral plant
genomes [3,4,10,12,19]; on the computational side most of this has been based on
common gene adjacencies in extant genomes, as summarized in such structures
as sets of species trees and contiguous ancestral regions (CARS) [2]. The latter
terminology, introduced successfully in the context of mammalian genomes [7],
where there are no polyploidizations since the common ancestor, and then taken
over to plant genomics [4,5,12], applies to a series of methods of which a recent
improved exemplar is proCARs [11]. We will show that in the case of flowering
plants, the avoidance of premature selection of gene adjacencies in RACCROCHE
allows the recovery of more of the ancestral genome than proCARs.

The rest of the paper is organized as follows. Section 2 presents the features
and procedure of the algorithm. (Most of the details appear in appendices.)
An application of the RACCROCHE pipeline is shown in Sect. 3 with a focus on
the reconstruction of the four monocot ancestors in the known phylogeny relat-
ing six extant monocot plant genomes. These include Acorus calamus (sweet
flag) from the order Acorales, Spirodela polyrhiza (duckweed) from the order
Alismatales, Dioscorea rotundata (yam) from the order Dioscorales, Asparagus
officinalis (asparagus) from the order Aspargales, Elaeis guineensis (African
oil palm) from the order Arecales and Ananas comosus (pineapple) from the
order Poales. This includes an evaluation of the reconstruction in terms of the
sizes of the ancient chromosomal fragments found, the coherence between adja-
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cent ancestral genomes, the coverage of the ancestors when mapped to extant
genomes, and the “choppiness” of this mapping in terms of ancestry descendant
rearrangement. Section 4 concludes the paper and outlines some future direc-
tions.

2 Methods

2.1 Input

The input to RACCROCHE consists of N annotated extant genomes related by
a given unrooted binary branching phylogeny, and a number of parameters,
including

W : window size to include generalized as well as immediate adjacencies,
NF : largest total gene family size allowed in ortholog grouping in all extant
genomes,
NG: largest gene family size allowed in any one genome,
NC: the number of longest contigs in ancestral genomes to be matched to
extant genomes,
K: the desired number of chromosomes for each ancestor,
DIS: the maximum distance between two adjacent genes in an extant genome
to be matched with adjacent genes in an ancestral contig.

Figure 1 depicts the overall flow of the RACCROCHE pipeline.

Fig. 1. Overall flow of the RACCROCHE procedure.
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2.2 The Pipeline

Step 1: Pre-process gene families. Pre-processing for the RACCROCHE proce-
dure starts with syntenically validated orthogroups, or gene families, constructed
from 1

2 (N2 + N) between-genome and self-comparison sets of pairwise SynMap
synteny blocks by accumulating all genes that are syntenically orthologous to at
least one other gene in the family. It retains only those families with at most
a preset number NF of members and at most NG members in any particular
genome. Without loss of generality, NF ≤ N × NG.

The use of syntenically validated adjacencies only, restricted to genes appear-
ing in synteny blocks identified by the comparison of some pair of the descen-
dant genomes, avoids generating huge gene families and astronomical numbers
of adjacencies not reflective of the ancestor.

An optional second “redistribution” step for genes in large families is
described in AppendixA.

Step 2: List generalized adjacencies. For each of the N extant genomes,
RACCROCHE compiles all generalized adjacencies, i.e., representatives of two gene
families, occurring within a window of a preset size, W , in the order of genes
on a chromosome. The adjacencies are oriented by the DNA strand or strands
containing the two genes, so that we can distinguish the two ends of each gene
and identify which ends are involved in the adjacency.

Step 3: List candidate adjacencies. For each ancestral tree node, allow only
adjacencies in occurring in two or three of the three subtrees connected by a
branch incident to that node as candidates to be adjacencies in the corresponding
ancestral genome. Occurrence in a subtree means occurrence in at least one of
the extant genomes in that subtree.

Step 4: Construct contigs. With candidate adjacencies weighted 2 or 3
according to whether they occur in 2 or 3 subtrees, use maximum weight match-
ing to extract the highest weight set of compatible adjacencies, i.e., each gene
end is matched to at most one other gene end, which automatically defines a set
of disjoint linear contigs for the ancestral genome.

A method for improving the coherence of successive ancestors is discussed in
AppendixB. This comes at the cost of other qualities of the contigs, and will
not be discussed further here.

Step 5: Match synteny blocks between ancestral genome and extant
genomes. For each of the NC longest contigs of an ancestral genome, search
for locally matched regions - synteny blocks - in all N extant genomes. This
process is formally described in AppendixC.
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Step 6: Cluster ancestral contigs into ancestral chromosomes. Cluster-
ing of ancestral chromosomes is based on co-occurrence of ancestral contigs of
sufficient size on the same chromosomes of extant genomes. First, a co-occurrence
matrix is constructed on the set of contigs counting the cumulative number of
times two different contigs are matched on the same chromosome in one or more
extant genomes. Next, a complete-link clustering of the contigs is performed
in each ancestral genome, based on the co-occurrence matrix. The hierarchical
cluster thus produced is decomposed either automatically (e.g., with a cut-off
level or with a cluster size criterion) or with some biologically-motivated manual
intervention into a preset number K of chromosomes. See Sect. 3.2 below for an
example.

Contigs are ordered by applying the algorithm of linear ordering problem [13]
based on the count of relative ordering, the number of times each contig appears
upstream/downstream of the other contig for every pair of contigs within a
cluster.

The clustering and ordering are detailed in AppendixD. These procedures
have been validated through simulation studies [16].

2.3 Visualizing and Evaluating the Reconstruction

Step 7: Painting the extant genomes according to the ancestral chro-
mosomes. Each of the K chromosomes of an ancestor genome is assigned a
different colour. Each extant genome can then be painted by the colours of
an ancestor based on the coordinates of synteny blocks calculated in Step 5.
Unpainted regions less than 1Mb long between two blocks of the same colour are
also painted with that colour. Although we can establish a general correspon-
dence between the chromosomes of the successive ancestor genomes, the synteny
blocks and the painting of the extant genomes will nevertheless depend on which
ancestor is used. Generally the immediate ancestor of a genome gives the most
meaningful painting.

Step 8: Adapting MCScanX to match ancestral genomes with extant
genomes. We use MCScanX [15] to connect matching parts of each descen-
dant and its immediate ancestor, as well as to calculate the optimal order of
chromosomes.

MCScanX requires both gene location and gene sequence to search pair-
wise synteny. The “genes” in the constructed ancestors, however, are really gene
familes, each represented by an integer label. For the purposes of MCScanX, we
simply choose a member of the gene family, either randomly, or from a descen-
dant of that ancestor.

For viewing purposes, the number of “crossing” lines in the trace diagram
should be minimized. MCScanX searches for the ordering of the chromosomes
that minimizes this, using a genetic algorithm.



Ancestral Chromosomes and Gene Orders 103

Step 9: Measures of Quality. In the construction of the contigs, we count
how many gene families and how many candidate adjacencies are incorporated
in total by the MWM and in the longest NC chromosomes. We also document
details of the contig length distribution, e.g., the longest contig and N50.

The coherence between all pairs of contig sets, each set associated with one
ancestor is a way of more global way of assessing the reconstruction. To be credi-
ble, the contigs at one ancestral node should resemble to some extent the contigs
at a neighbouring ancestor.

A measure of commonality between two contigs i and j from two ancestors
I and J respectively, is given by

simij =
xij√
xi.x.j

, (1)

where xi., x.j and xij are the numbers of gene families in contig i, in contig j
and in both contigs, respectively.

Then, calculating the coherence between two tree nodes for the NC longest
contigs.

coherenceIJ =

∑
i maxNC

j=1 simij ,

NC
. (2)

Percent coverage is defined as the percentage that genome G is covered by
the synteny block set of ancestor A. It also reflects how closely ancestor A is
related to G.

Choppiness of painting in G is quantitatively measured by the number of
different colours, T , the number of single-colour regions, R, and the number
of small stripes, X, on each extant chromosome [9]. T is defined as the sum
number of different colours on each chromosome of G minus 1, reflecting how
much inter-chromosomal exchange, such as translocation, there has been; R is
defined as the sum number of single-colour regions on each chromosome of G
and is a measure of how much intra-chromosomal movement (e.g., reversals or
transpositions) there has been; X is defined as the number of stripes less than a
certain threshold size (i.e. 300 Kbp), which we deduct to avoid inflating R. The
choppiness measure of painting in G is written as R − X.

2.4 Ancestral Gene Function

To aid in future studies of the genomic organization of gene function, a GO-
term enrichment analysis of the members of each gene family is implemented to
produce a functional annotation for the inferred ancestral genes. The details are
reported in AppendixE, but are not applied in this paper.

3 Reconstruction of Monocot Ancestors

We applied our method to the reconstruction of four monocot ancestors, given
six extant monocot plant genomes from Acorus calamus (sweet flag), Spirodela



104 Q. Xu et al.

polyrhiza (duckweed), Dioscorea rotundata (yam), Asparagus officinalis (aspara-
gus), Elaeis guineensis (African oil palm) and Ananas comosus (pineapple). The
phylogenetic tree is shown in Fig. 2. The divergence time from Ancestor 1 to any
of the extant genomes is about 130 Mya [6]. The reconstruction problem is dif-
ficult due not only to this lengthy elapsed time, since the early Cretaceous,
comparable to that of the early divergence of placental mammals, but also to
the occurrence of at least one WGD in every order, and generally two or more.

Fig. 2. Phylogeny showing relationships among six monocots and their ancestors.

One question we aimed to answer was whether both ancient WGD detected
in the extant Dioscorea genome occurred after its branching off the stem lineage
to Asparagales, Arecales and Poales, or whether one of these WGD occurred
earlier, between Ancestors 1 and 2, and is identical to the “tau” event known to
affect all these later branching orders.

3.1 Properties of the Contig Reconstruction

After numerous trials, input parameters that seemed (somewhat subjectively)
to balance contig length properties, coherence and coverage were chosen to be
window size W = 7, maximum total family size NF = 50 and within-genome
maximum family size NG = 10. Table 1 summarizes the gene content of each of
the input genomes, first, syntenically validated genes (i.e., in synteny blocks);
second, after removing very large gene families; third, after filtering for within-
genome family size; fourth, genes present in a candidate adjacency; fifth, genes
incorporated in the 250 longest contigs for any ancestor.
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Table 1. Numbers of genes at each step of building contigs.

In synteny
blocks

In families
<5000

In filtered
families

In
candidate
adjacencies

In contigs,
after MWM

Acorus 21,308 11,807 11,300 10,189 9,649

Spirodela 20,751 8,385 8,005 7,706 7,276

Dioscorea 19,240 8,256 7,873 7,485 7,141

Asparagus 28,141 10,109 9,645 9,128 8,750

Ananas 27,024 11,744 11,180 10,623 10,116

Elaeis 21,425 12,833 12,227 11,831 11,369

Recall that to be a candidate, an adjacency must appear at least once in at
least two different genomes, thus satisfying the safety criterion for at least one
ancestor. Applying the MWM algorithm to the set of candidates greatly reduces
the number in selecting the best linearized subset, as documented in Table 2.

Table 2. Input adjacencies to MWM, and output.

Ancestor 1 Ancestor 2 Ancestor 3 Ancestor 4

Candidate adjacencies 35,165 41,963 47,118 48,452

MWM adjacencies 6,335 6,847 7,244 7,310

The contigs that are formed by the MWM matches are of moderate length,
as suggested by Table 3. The longest one contains 84–89 genes and the last one
retained (NC = 250) contains around 10 genes. We then locate all the matches
of these contigs on the chromosomes of the extant genomes.

A good proportion of the MWM adjacencies will be shared by successive (or
all) ancestors, and many contigs will be similar from ancestor to ancestor. Table 4
displays the coherence among the contig sets for the four ancestor genomes.

Table 3. Contig statistics for the four ancestors. The number of genes in a contig
measures its length.

Longest

contig

Total number

of contigs

N50 N60 N70

Length Number Length Number Length Number

Ancestor 1 84 3,950 10 249 5 403 1 662

Ancestor 2 89 3,441 12 219 8 292 3 510

Ancestor 3 85 3,043 15 169 10 252 5 393

Ancestor 4 88 2,975 17 151 12 215 6 342
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Table 4. Coherence among ancestors.

Ancestor 1 Ancestor 2 Ancestor 3 Ancestor 4

Ancestor 1 1.000

Ancestor 2 0.430 1.000

Ancestor 3 0.361 0.443 1.000

Ancestor 4 0.318 0.357 0.419 1.000

Table 5. Contigs and genes in ancestral chromosomes.

Chromosome Ancestor 1 Ancestor 2 Ancestor 3 Ancestor 4

Contigs Genes Contigs Genes Contigs Genes Contigs Genes

1 43 857 42 1,398 40 1,909 44 1,911

2 40 729 43 585 43 683 46 703

3 23 363 21 443 22 467 18 620

4 44 951 39 671 42 853 38 917

5 41 773 43 894 32 656 40 810

6 23 536 23 666 30 958 31 985

7 36 743 39 844 41 497 33 411

Total 250 4,952 250 5,501 250 6,013 250 6,357

3.2 Clustering

The choice of complete link method of hierarchical clustering is appropriate
in the context of searching for balanced clusters at all levels, and avoiding an
asymmetric “chaining” effect. Chromosomes in a genome tend to be roughly the
same order of magnitude, which therefore suggests complete link.

The hierarchical cluster of the 250 longest contigs according to their chromo-
somal co-occurrence (Sect. 2.2) is seen beside each panel in Fig. 3. The intensity of
the shading of each cell in the heat map reflects how frequently the corresponding
contigs co-occur in the extant genomes. In each case seven large, darkly shaded,
blocks emerge neatly from the map, thus constituting the chromosomes of the
ancestral genome. Table 5 contains statistics on the chromosomes and contigs.

3.3 Painting the Chromosomes of the Present-Day Genomes

Each chromosome in an ancestor genome is assigned a colour. Despite the genome
rearrangements intervening between an earlier ancestor and a later one, corre-
sponding chromosomes in different ancestral genomes can be identified by sim-
ilarity in the gene content of their constituent contigs. This correspondence,
though it disrupted in many places by interchromosomal exchanges, is reflected
in the chromosomal colour assignment in the four ancestors. The colours are then
projected onto the chromosomes of the extant genomes that served as inputs to



Ancestral Chromosomes and Gene Orders 107

Fig. 3. Heat maps of the four ancestors showing the clusters of contigs making up
ancestral chromosomes from the longest 250 contigs by the complete-link clustering
algorithm.

the pipeline, based on the contig matches detected in Sect. 3.1. Painting is carried
out as described in Sect. 2.3 and is depicted in Fig. 4.

3.4 Evaluation

Tables 6 and 7 provide quality assessments of the reconstruction as manifest in
the painted extant genomes. In Table 6 we see a high degree of coverage of the
extant genomes, while Table 7 shows a degree of choppiness that is moderate,
given the time scale involved. Ancestors 1 and 2 achieve better coverage of all the
extant genomes, even though most of the genomes were more directly involved in
the reconstruction of Ancestors 3 and 4. This may be an artifact of the sparsity
of matches from Ancestors 1 and 2, so that the inter-block colouring discussed in
Sect. 2.3 can cover longer, uninterrupted, regions of the chromosomes. A similar
sparsity explanation can also be entertained for the low degree of choppiness of
the paintings on the Spirodela genome, despite its higher degree of polyploidy
than Acorus.
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Fig. 4. Chromosome painting of extant genomes according to the colour assignment in
their immediate ancestors. Ancestral blocks shorter than 150 Kbp are not shown.
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Table 6. Percent coverage of extant genomes by ancestral chromosomes.

Ancestor 1 Ancestor 2 Ancestor 3 Ancestor 4

Acorus 81% 80% 82% 83%

Spirodela 74% 78% 80% 81%

Dioscorea 54% 61% 62% 63%

Asparagus 63% 62% 66% 71%

Ananas 62% 69% 71% 70%

Elaeis 75% 79% 83% 84%

Table 7. Choppiness of painting on extant genomes. T reflects how much inter-
chromosomal exchange has occurred, R − T is a measure of intra-chromosomal move-
ment (e.g., reversals or transpositions) and X is the number of small stripes shorter
than 300 Kbp, which misleadingly inflates R.

T Acorus Spirodela Dioscorea Asparagus Ananas Elaeis

Ancestor 1 45 33 48 40 48 59

Ancestor 2 38 22 45 38 38 57

Ancestor 3 48 36 48 43 42 60

Ancestor 4 50 39 57 47 55 65

R− T Acorus Spirodela Dioscorea Asparagus Ananas Elaeis

Ancestor 1 122 56 128 233 88 193

Ancestor 2 95 34 107 220 94 161

Ancestor 3 129 51 131 284 104 194

Ancestor 4 172 75 140 331 124 247

R−X Acorus Spirodela Dioscorea Asparagus Ananas Elaeis

Ancestor 1 134 63 136 239 106 216

Ancestor 2 112 45 121 221 100 196

Ancestor 3 142 64 143 283 110 215

Ancestor 4 170 74 166 337 137 270

3.5 MCScanX Visualization

A different view of the evolution of the monocot genomes via ancestral interme-
diates is obtained through connecting homologous synteny blocks in a MCScanX
visualization, as laid out in Fig. 5. Consistent with the history of extensive rear-
rangement evident in Fig. 4 and Table 7, the patterns of MCScanX connections
is rather complex. Nevertheless, we can find important relationships using the
“highlight” feature of the software.

Thus, the comparison between Ancestor 1 and Acorus shows several chromo-
somal regions in the ancestor each linked to two regions in the extant genome,
whereas the opposite pattern is non-existent. Similarly the comparison between
Ancestor 1 and Spirodela also shows instances of a 1:4 pattern, consistent with
the two WGDs inherited by this species.
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The most interesting pattern, however, is that between Ancestors 1 and 2,
which strongly suggests a duplication event occurring before the branching of
the Dioscorales from the main monocot stem lineage. In contrast the Ancestor
2-Ancestor 3 and Ancestor 3-Ancestor 4 comparisons both show 1-1 patterns.
Moreover, though dot-plot examination of Dioscorea evidences four subgenomes,
thus two WGD in its history, the MCScanX diagram of Ancestor 2-Dioscorea
only shows evidence of one event, confirming that one event must have predated
Ancestor 2. This latter event is the one shared by all the more recently branching
orders, known as “tau”.

Fig. 5. Matching genomes, extant and ancestral, with their immediate ancestors.

4 Discussions and Conclusions

This work explored an alternative approach to genome reconstruction by step-
wise piecing together of small units. Instead, we compile a large number of
potential components and use a combinatorial optimization approach to combin-
ing them, an approach explicitly disavowed by, e.g., [11]. We were motivated by
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the special case of plant comparative genomics, which has to deal with the after-
math or recurrent polyploidization and fractionation. Compared to approaches
like proCARs [11] which is very successful in reconstructing ancestral animal
genomes, RACCROCHE may work better with plant genomes, since it is designed
to be robust against the gene order scrambling effect of fractionation.

Since the entities reconstructed by proCARs are not meant to be individual
ancestral genes, but blocks of syntenically related genes identified at the level of
extant genomes, it is hard to compare our inferred ancestral genomes, composed
of hypothetical genes with identifiable functions, with the output of proCARs.
In our hands proCARs identified 214 synteny blocks in our data, organized into
“CARs” (contiguous ancestral regions) making up the ancestral genomes. These
contained a total of 3,248 “universal seeds”, which may be comparable to our
ancestral genes, although our ancestors contained about twice as many. Inso-
far as these comparisons are valid, they confirm a role for RACCROCHE in plant
comparative genomics.

One particular feature that stands out in this work, is the innovative clus-
tering of counts of contig co-occurrences on extant chromosomes, followed by
heatmap construction to identify ancestral chromosomes. Another is the use of
MCScanX to locate a WGD on an internal branch of a phylogeny.
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Appendices

A Redistributing Genes from Families Exceeding Upper
Size Limits

As an optional second “redistribution” step, all families with more than NF
members or more than NG members in any particular genome, are flagged.
Then the construction of the families is repeated, with the restriction that no
gene can be recruited to a family by virtue only of a similarity of less than some
threshold homology level θ to a gene already in the family. The intent is to break
up large families held together by a few weak links, and thus to retrieve some
better supported smaller families.

https://genomevolution.org/coge/
https://genomevolution.org/coge/
https://github.com/jin-repo/RACCROCHE
https://github.com/jin-repo/RACCROCHE
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B Modes of Contig Construction

RACCROCHE executes for a single set of W,NF,NG parameters, or for a range of
values of W and NG. In the latter case, there is an option, designed to increase
coherence among sets of contigs for successive ancestors, that the MWM for any
combination of W and NG must be restricted to include all adjacencies already
recovered for lesser values of W or NG, insofar as possible. Thus, starting with
some small W and NG, we can construct MWM solutions for larger window size
and/or larger gene family size, and hence sets of contigs, by incrementing one
or the other of the parameters.

It is possible, however, to have conflicts between W,NG− 1, and W − 1, NG
analyses. For example if adjacencies (a, b) and (b, c) are in the MWM for
(W,NG − 1) and (a, b) and (b, d) are in the MWM for (W − 1, NG), then a
matching for W,G cannot be forced to include all matchings from the two pre-
vious MWM. To accommodate this possibility, when we restrict the MWM for
(W,NG) to include all adjacencies from (W,NG−1) and (W −1, NG), we make
an exception for any adjacencies from either that are in potential conflict with
adjacencies from the other. Thus (a, b) in the example above might be obligato-
rily included, but (b, c) and (b, d) would not. Thus the MWM for (W,NG) might
include (b, c) or (b, d), but not both.

C Matching Contigs to Chromosomes of Extant Genomes

For the ancestor genome, A, computed from a set of extant genomes neighbouring
A, G1···n, perform the following steps.

1. Extract gene features of ancestor A in descendant genomes.
For every gene, g, in ancestor A computed from Step 2, retrieve six fea-
tures of this gene in every extant genome G1···n involved in construct-
ing ancestor A. The features of a gene include chromosome ID, start and
end chromosomal positions, distance between g to its next adjacent gene
in Gi, gene family ID labelled in Step 1, and contig ID in A, denoted as
gA→Gi(chr, start, end, distance, gf, ctg).

2. Map ancestor A to each of the descendant genomes.
The ancestor will be mapped as ancestral syntenic blocks on the descendant
genome in two steps. The first step initializes a syntenic block by merging two
adjacent genes given a distance threshold DIS: merge two genes, g1 and g2,
forming one ancestral syntenic block on Gi if g1 and g2 satisfy the following
conditions:
(a) g1 and g2 locate the same chromosome of Gi;
(b) g1 and g2 are adjacent to each other; in other words, there could be a

non-coding region but no other gene(s) between g1 and g2;
(c) The distance between the two adjacent genes must be less than or equal

to the distance threshold DIS (i.e. DIS = 1 Mbp).
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The second step extends the above identified ancestral syntenic block by
merging flanking gene(s) into the block if the gene(s) satisfies the above three
conditions. It stops extending the block if no flanking gene could be merged
into the block. After the two steps, an ancestral synteny block mapping A
to Gi is denoted as syntenyBlk(chr, start, end, ctg, len). The set of synteny
blocks between A and Gi is
syntenyBlkSetA→Gi = {syntenyBlkk(chr, start, end, ctg, len)|1 ≤ k ≤ m,
where m is the total number of synteny blocks mapping from A to Gi}

D Construction of Ancestral Chromosomes

1. Filter the set of blocks longer than a block length threshold.
Given a block length threshold, blockLEN , syntenyBlkSet

A→Gi is a subset
of syntenyBlkSetA→Gi , where each block in the set is longer than blockLEN
(i.e. blockLEN = 150 Kbp).

2. Count co-occurrence of ancestral contigs on same chromosomes.
Based on syntenyBlk.chr and syntenyBlk.ctg of each pair of synteny block
in syntenyBlkSet

A→Gi , gather the co-occurrence of ancestral contigs on the
same extant chromosome. Write the co-occurrence result into the lower trian-
gle of a NC × NC matrix, m, where the rows and columns are contigs with
ID from 0 to (NC − 1), mi,j is the number of co-occurrence between contigs
i and j, where 0 < j < i < NC − 1. The maximum co-occurrence frequency
in m is denoted as maxfreq.

3. Cluster ancestral contigs into ancestral chromosomes according to pairwise
distance matrix based on co-occurrence.
A NC by NC distance matrix, dmat, is calculated as

dmati,j = − log(
maxfreq −mi,j

maxfreq
).

This distance matrix is fed into the complete-link clustering algorithm. This
can then be composed into K clusters, according to users’ preferences. The
resultant clusters of contigs correspond to ancestral chromosomes and their
compositions.

Last, attach ancestral chromosome number as an attribute to each of the
synteny block:

syntenyBlkSetA→G1···N = {syntenyBlkk(chr, start, end, ctg, len, ancestralchr)},

where ancestral chr corresponds to the cluster ID which blk.ctg belong to.
To order the contigs along each chromosome, we proceed as follows.
After the syntenyBlkSetA→G1···N is generated in Step 3, relative ordering

between every pair of contigs is counted. The number of times each contig
appears upstream/downstream of other contig is structured into an NC × NC
ordering matrix, C, where the rows and columns are contig IDs from 0 to NC−1.
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ci,j represents the number of times contig i occurred in upstream of contig j in
the extant chromosomes.

Given the ordering matrix C, the linear ordering problem (LOP) is the prob-
lem of finding a permutation π of the column and row indices {1, · · · , NC}, such
that the value

f(π) =
NC∑

i=1

NC∑

j=i+1

C(π(i),π(j)) (3)

is maximized [13]. In other words, the goal is to find a permutation of the columns
and rows of C such that the sum of the elements in the upper triangle is maxi-
mized.

By applying a meta-heuristic solver of LOP, Tabu Search [8], the solution
order corresponds to the ordering/permutation of contigs sorted by their posi-
tions along ancestral chromosomes.

E Functional Annotation of Ancestral Genes

We create a set of all genes in all families represented by ancestral genes in
the reconstructed ancestor. This is the background set. For each gene family,
all the genes in the family constitute a query set for GO-term enrichment anal-
ysis against the background set. Significant terms that emerge constitute the
functional annotation for the ancestral gene.
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Abstract. The functional profile of metagenomic samples allows the understand-
ing of the role of the microbes in the environment. Sequence alignment of short
reads against curated databases has been widely used to profile metagenomic
samples. However, this method is time consuming and requires high computing
resources. Although several alignment free methods based on k-mer composition
have been developed in recent years, they still require a large amount of memory.
In this paper, MetaMLP (Metagenomics Machine Learning Profiler), a machine
learning method that represents sequences into numerical vectors (embeddings)
and uses a simple one hidden layer neural network is proposed to profile functional
categories. Unlike other methods, MetaMLP enables partial matching through a
reduced alphabet for sequence embeddings. MetaMLP is able to identify a larger
number of reads compared to Diamond (one of the fastest sequence alignment
methods) while maintaining high performance with a 0.99 precision and a 0.99
recall. MetaMLP can process 100 million reads in around 10 min in a laptop
computer, a 50x speed up compared to Diamond. MetaMLP is freely available at
https://bitbucket.org/gaarangoa/metamlp/src/master/.

Keywords: Word-embedding · Sequence alignment ·Metagenomic · Gene
profiling · Neural network

1 Introduction

The wide and rapid adoption of metagenomic sequencing in studying microbial diver-
sity, antibiotic resistance, and other functional profiling poses serious computational
challenges. The large amounts of data require development of computational tools that
are both accurate and fast. Many sequence comparison algorithms such as BLAST [1],
FASTA [2], HMMER [3], PSI-BLAST [4] have been introduced. BLAST is to date the
most popular and trusted tool for sequence alignment. However, it is well known that
BLAST does not scale well when comparing millions of sequences. The reason is that
BLAST uses a computationally demanding strategy consisting of a seed and extend algo-
rithm [5]. Although sequence alignment is considered the gold standard approach for
sequence analysis, there are cases where this technique can produce dubious results [6].
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For instance, alignment-based methods assume that homologous sequences share a cer-
tain degree of conservation. Although this assumption is considered to be true when ana-
lyzing conserved domains, organisms such as viruses that exhibit high mutation rates
challenge this collinearity principle. When analyzing short sequences (e.g., Illumina
sequencing reads), the percentage of identity does not guarantee correctness. Highly
identical sequences do not imply homology [7]. In the opposite case, sequences with
less than 30% identity can potentially be considered as homologous [8].

DIAMOND [9], BLAT [10], USEARCH [11], and RAPSearch [12] are alternatives
to BLASTX that can run much faster but with a loss of sensitivity. Particularly, the
dramatic speed up of DIAMOND (20,000X over BLAST) is achieved by using a double
indexing strategy, spaced seeds (longer seeds where not all positions are used) and a
reduced alphabet. In detail, DIAMOND implements a seed and extend algorithm that
first indexes both query and reference sequences. Then, the list of seeds in both the
query and reference are linearly traversed to determine all the matched seeds with their
locations. Finally, seeds are extended using the Smith-Waterman algorithm [13].

Alignment-free methods have been proposed as an alternative to quantify sequence
similarity without performing sequence alignment [6, 14]. These methods do not use
the seed and extend paradigm. Therefore, their computational complexity is often linear
and only depends on the query sequence length. In next-generation sequencing, several
alignment-free strategies have been developed for different applications, including tran-
script quantification (kallisto [15], sailfish [16], Salmon [17], RNA-Skim [18]), variant
calling (ChimeRScope [19], FastGT [20]), de-novo genome assembly (minimap [21],
MHAP [22]), and the profiling of metagenomics taxonomy using a k-mer matching
approach (Kraken [23], Mash [24], CLARK [25], and stringMLST [26]).

The word embeddings technique is one of the most successful methods applied
in natural language processing (NLP) where words can be represented as a numerical
vectors. For instance, the Word2vec technique [27] uses a shallow two-layer neural
network to train and aggregate word embeddings by using the continuous bag of words
(CBOW) approach. Thus, identifying semantic associations between a target word and
its context. The concept of using word vectors for representing protein/DNA sequences
is not new and has been explored before. For instance, DNA2Vec [28] explores the
associations between varying length k-mers to generate an embedding space that proved
to correlate with sequence alignment. Yang et al. [29] explores the performance of
word embeddings for classification of protein functions. Yan et al. demonstrated that k-
mer embeddings outperformed other techniques. However, in both studies, embeddings
are learnt in an unsupervised way. This means that the embeddings are computed first
and then the classifier is built by using those embeddings. In this paper, MetaMLP, an
alignment-free method that uses word embeddings to represent target protein databases
is proposed for the functional profiling of metagenomic samples. The strategy behind
MetaMLP relies on the CBOWmodel. However, the target word is replaced by the label
or functional class of the sequence and the context words correspond to the k-mers and
fragmented k-mers. Therefore, MetaMLP is a novel strategy that uses a combination
of hash indexing, six open reading frame translation, a reduced amino acid alphabet
and an embedding representation to process metagenomic data. In addition, MetaMLP
was built up on top of the C++ FastText [30] library and consists of two main stages:
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MetaMLP-index to process protein sequences to build a machine learning model and
MetaMLP-classify to annotate reads from metagenomic sequencing data.

2 Methods

The overall structure of MetaMLP is shown in Fig. 1 and consists of two main com-
ponents: A) An indexing stage that converts protein reference sequences into a word
vector representation to train a classifier, and B) A prediction stage that processes short
sequencing reads and classifies them into one of the predefined classes from the reference
database.

Fig. 1. Overview of MetaMLP.

2.1 Indexing Protein Reference Databases

Reference Database Preprocessing. To increase the chances of detecting sequences
with mismatches, reference proteins are first transformed into their equivalent 10 amino
acid alphabet version using the murphy. 10 alphabet representation used in Rapsearch
(a [KR] [EDNQ] C G H [ILVM] [FYW] P [ST]) [31]. Then, k-mers of a fixed length
are extracted from each protein sequence. However, to consider all k-mers within a
sequence, a sliding window of one amino acid is used. Thus, each protein comprises k
versions, each one corresponding to a different starting location [1, …, k]. Thereafter, a
‘sentence’ of k-mers is extracted by taking 3 to 5 consecutive k-mers (equivalent to reads
of 100 to 150 bps, Fig. 1A). At the same time, a table with unique k-mers is built and
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stored for later to be used for filtering sequences that diverge greatly from the reference
database during the prediction stage.

Training. MetaMLP uses the FastText implementation of the continuous bag of words
(CBoW) technique to learn the semantic relations between protein sequences and their
labels. Thus, proteins are represented as a series of k-mer sentences (analog to sentence
of words in text documents). Then, it decomposes each k-mer within the sentences into
a numerical representation (k-mer vector) (see Fig. 1A). Later, it computes the average
of the k-mer vectors and passes it to a single hidden layer neural network. Finally, it
outputs the probability distribution over the established classes by using a softmax layer.
In addition,MetaMLP enables the bag of n-grams feature fromFastText to capture partial
information from the k-mers. These n-grams are sub sequences from the k-mers passed
along with the full size k-mer allowing to identify k-mers with partial matching.

2.2 Prediction of Short Reads

MetaMLP is designed to efficiently profile metagenomic samples with millions of reads
from short sequencing libraries against a target reference database. As reads are made of
nucleotides, MetaMLP first translates each sequence into six reading frames. Then for
each reading frame, a random k-mer is selected from its sequence and checked against
the hash table that was built during the indexing stage. If a k-mer is found in the hash
table, all k-mers are extracted from the read and classified using the trained CBoW
model. If not, a new k-mer is randomly selected from the read at a different position.
This process is repeated to a maximum number of tries defined by the user. If more than
one reading frame gets classified, MetaMLP picks up the reading frame with the highest
classification probability (see Fig. 1B).

Once a full metagenomic dataset is processed, MetaMLP counts the number of reads
per class using a minimum probability cutoff defined by the user and reports an absolute
abundance table. Additionally, MetaMLP also reports a fasta file containing the read
name along with its classifications, probabilities and sequence. This file is useful for
cases where MetaMLP is used as a filter to target a particular functional class.

2.3 Databases

Pathway Reference Database. Bacterial protein sequences from the Universal Protein
Resource (UniProt) were downloaded and filtered, keeping only those proteins that have
been manually curated, reviewed and contained evidence at the protein level. In total
20,161 proteins were obtained and 4,105 of those were annotated to at least one pathway.
Lastly, pathways with less than 50 proteins were discarded to get a total of 3,216 proteins
and 21 different pathways.

Antibiotic Resistance Database. MetaMLP was trained to identify short reads associ-
ated to Antibiotic Resistance Genes (ARGs) from metagenomic short sequencing data.
Thus the DeepARG-DB-v2 database [32] containing a total of 12,260 sequences belong-
ing to 30 antibiotic categories was downloaded. However, only antibiotic resistance cate-
gories with at least 50 protein sequenceswere considered for downstream analysis. Thus,
a total of 12,147 proteins and 14 categories were used to train the MetaMLP model.
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Gene Ontology Reference Database. Protein sequences associated to the biologi-
cal process response to stress (GO:0006950) were downloaded from UniProt web-
site. However, only bacterial curated sequences and biological processes with at
least 100 sequences were considered for downstream analysis. In addition, the GO
database comprises proteins with multiple associated labels. For instance, the protein
sequence Q55002 is associated to response to antibiotic (GO:0046677) and translation
(GO:0006412). Therefore, reads from this protein would be classified to both categories.
However, asMetaMLP uses a softmax layer for prediction, it will distribute the probabil-
ity between both categories. In an ideal scenario, both classes would have a probability
of 0.5. This database was used to test the ability of MetaMLP to represent sequences
associated to multiple labels.

2.4 True Positive Dataset

The pathway database was used to build a true positive database. Because MetaMLP
uses amino acid sequences for training and nucleotide sequences for querying, it was
necessary to identify the corresponding nucleotide sequences for each one of the proteins
in the pathways database. Therefore, UniProt identifiers were cross referenced against
the RefSeq database and a list of gene candidates were found. Then, those candidates
were aligned to the protein sequences using Diamond BlastX with a 90% identity and
a 90% overlap. If multiple alignments were obtained, the best hit was selected as the
representative gene sequence for the target protein sequence. Thus, each entry in the
database contained a respective gene sequence. Finally, the pathway database was ran-
domly split into training (80%) and validation (20%). The training set was used to tune
the model whereas the validation set was used only to test the trained model. Note that
the training set corresponds to amino acid sequences whereas the validation set consists
of nucleotide sequences. To simulate a library of short reads, sequences of 100bp long
were randomly extracted from each nucleotide sequence from the validation dataset.
Thus, a total of 35,751 short reads were generated.

Diamond is currently one of the most widely used tools for metagenomic analysis.
Therefore, to evaluate the performance of MetaMLP, Diamond BlastX with the best
hit approach was used. Diamond was run using a sequence alignment identity of 80%,
whereas MetaMLP was set with a minimum probability of 0.8. Precision, Recall and F1
score were computed to measure the performance of both approaches.

2.5 False Positives Dataset

To test the ability ofMetaMLP to filter out sequences that are not associated to any of the
selected pathways (false positives), a synthetic dataset was constructed using the same
number of reads from the true positive dataset. However, each nucleotide position on
this dataset was randomly selected. This negative dataset was then run against MetaMLP
and the best hit approach using Diamond with default parameters. Precision, recall and
F1 score were computed to measure the performance of both methods.
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2.6 Time and Memory Profiling

To evaluate the time performance and memory footprint of MetaMLP, a dataset of 100k,
1M, 10M and 100M reads were built by randomly extracting reads from a real metage-
nomic soil sample of 407,645,066 reads. This sample is under the SRAaccession number
SRR2901746 and corresponds to a 250bp long read sample from the Illumina HiSeq
2000 sequencer. Along with MetaMLP, Diamond was also run with the same datasets.
Both methods were run with only one CPU enabled in the same Linux 16.4 environment.

2.7 Functional Annotation of Metagenomic Datasets

MetaMLP was used to profile four different environments comprising a total of 68
metagenomic samples through the functional composition analysis including: Pathways
detection, response to stress, and antibiotic resistance composition. The 68 public avail-
able metagenomes were downloaded from the Sequence Read Archive (SRA) from
the National Center for Biotechnology Information (NCBI) spanning four different
environments as follows: 10 soil (S), 15 human gut (HG), 15 freshwater (FW) and
28 wastewater (WW) samples. Results from MetaMLP were compared against the best
hit approach using Diamond BlastX with an identity cutoff of 80%.

For the GO reference database, MetaMLP was run with a permissive 0.5 minimum
probability to retrieve multiple classifications. Relative abundance results were com-
pared against those obtained using sequence alignment with Diamond BlastX at an 80%
identity cutoff.

3 Results and Discussion

The sequence embedding strategy allows MetaMLP to represent amino acid sequences
into numerical vectors (embedding dimension) by taking into account the distribution
of the k-mers in the protein sequence as well as their labels. Thus, MetaMLP uses the
supervised embedding implementation from FastText to learn these numerical vectors
and minimize the distances between members of the same class and maximize the outer
distance to other classes. For instance, proteins that belong to Beta-lactamase class are
expected to cluster together and keep distant from members of other classes. Figure 2
shows the distribution of the MetaMLP embeddings in a two dimensional space gener-
ated by the t-SNE algorithm [33]. For targeted databases such as the ARG categories or
pathways database, MetaMLP clustered categories according to their labels with a rep-
resentative cohesion and separation (silhouette score: 0.56 and 0.62 for pathways and for
ARGs respectively, Fig. 2A–B). Interestingly, in a complex classification problem rep-
resented by the GO database where proteins contain multiple labels, MetaMLP show a
consistent distribution over the clusters and its corresponding categories. Clusters shown
in Fig. 2C describes the relationship among different biological processes involved in
response to stress. For example, proteins responding to antibiotics are also associated
to other biological process such as response to toxic substances, pathogenesis, defense
to virus, chemotaxis, response to DNA damage, among others. Such associations can
be clearly seen from the embeddings visualization. Therefore, the embedding strategy
adopted inMetaMLP is also suitable for representing reference databases where proteins
contains multiple labels.
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Fig. 2. The MetaMLP embeddings for different gene databases

3.1 Detection of True Positive Hits

The pathways database was used to assess the ability of MetaMLP to 1) discriminate
between pathway-like reads and 2) to evaluate the performance ofMetaMLP on classify-
ing short sequences fromaparticular pathway.To compare the performance ofMetaMLP,
the best hit approach using Diamond BlastX was used. In total, MetaMLP was able to
identify 10,433 (29%) pathway-like reads out of the total 35,751 with a probability
greater than 0.8, whereas, the baseline approach was able to identify 8,695 (24%) reads
out of the 35,751. Thus, MetaMLP was able to identify 5% more reads than the best
hit approach at 80% identity cutoff. Further, both methods were compared for their
positive predictions to evaluate their performance in discriminating reads from a par-
ticular pathway. As expected, the sequence alignment approach performed with a high
average precision (0.99) and recall (1.00) whereas MetaMLP was also near to a perfect
prediction with a 0.99 average precision and 0.99 average recall indicating the potential
of the k-mer vectors to represent protein sequences to profile metagenomes. It is also
worth mentioning that both MetaMLP and the best hit approach did not perform well
for three categories (Aromatic compound metabolism, Bacterial outer membrane bio-
genesis, and xenobiotic degradation). Interestingly, the best hit approach was not able to
identify any read for the bacterial outer membrane biogenesis when MetaMLP obtained
a 1.00 precision but a low 0.13 recall indicating a high sensitivity of MetaMLP in dis-
criminating true positives for this category but failing for false negatives. In terms of
relative abundance, the read counts were highly correlated between the best hit approach
and MetaMLP (Pearson correlation coefficient = 0.988), indicating that MetaMLP can
correctly characterize the composition of the pathways in the simulated dataset.

3.2 Detection of False Positives Hits

A false positive refers to a read that does not belong to any pathway class but is predicted
to a particular pathway. In this false positive scenario, MetaMLP was tested against the
number of predicted random reads by counting how many out of the 35,751 negative
reads were classified in any pathways. MetaMLP classified only two reads (0.005%) out
of the 35,751 negative reads, indicating a very low false positive rate. As expected, the
best hit approach did not produce any relevant alignment.
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3.3 Time and Memory Usage of MetaMLP

The main advantage for using a classifier instead of performing a sequence alignment is
the running time improvement. Results show that MetaMLP keeps an almost identical
level of sensitivity compared to Diamond BlastX. However, the strength of MetaMLP
relies on its speed. Table 1 shows the speed benchmarking over datasets with different
number of reads. Note that MetaMLP is>50x times faster than Diamond for all the sam-
ple sizes. MetaMLP produces very similar results in terms of relative abundance using
the ARGs database and pathway database with a correlation of 0.951 and 0.953, respec-
tively. Note that in this test, MetaMLP identified 35% more ARG-like reads (253,370)
compared to the number of reads (186,736) detected from Diamond BlastX. In addi-
tion, MetaMLP is also memory efficient, depending mostly on the size of the reference
database. For instance, it requires a minimum RAM memory of 1.0 Gb to run the path-
way database, 1.2 Gb the ARGs database and 2.8 Gb the GO database. When processing
100M reads, it required 1.7 Gb in total with the pathways database whereas Diamond
BlastX required 6.68 Gb. The low memory usage in MetaMLP is a consequence of its
classification strategy where reads are loaded in chunks of 10,000 reads for efficient I/O
rate. Therefore, MetaMLP can be run on any personal computer without the need of a
big computer cluster with a high amount of RAM memory.

Table 1. Time profiling of MetaMLP compared to Diamond BlastX for different sample sizes (s
means seconds, m means minutes)

Number of reads MetaMLP Diamond

100,000 9 s 38 s

1,000,000 27 s 6 m

10,000,000 1 m 67 m

100,000,000 14 m 714 m

3.4 Functional Annotation of Different Environments

MetaMLP was run over the 67 real metagenomic samples processing a total of
2,186,933,071 reads. MetaMLP was able to predict 2,343,026 as ARG-like reads in
710 min using only one CPU, whereas Diamond BlastX identified 2,003,050 reads tak-
ing a total of 5,256 min using 20 CPUs. The average correlation of the abundances
between Diamond and MetaMLP was of 0.94 (0.88 log transformed abundance). Inter-
estingly, human gut microbiota and wastewater were the two environments where both
methods had the highest correlation with respect to their log transformed abundance
(0.96, 0.93 respectively) whereas soil and freshwater had each a correlation of 0.83.
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3.5 Observation of MetaMLP Annotations Against an Extensive Metagenomics
Study

An extensive study carried out by Pal et al. [34] uses over >800 metagenomic samples
spanning several environments with a sequence alignment strategy at a 90% identity cut-
off for annotation. This study (named Pal800 for simplicity) has shown that the human
gut microbiota is one of the environments with the highest relative abundance compared
to other microbiomes (soil, wastewater and freshwater). Concordantly, when MetaMLP
was run over the 68 real metagenomic samples using the GO database, it also profiled the
human gut microbiome as the highest relative abundance for the response to antibiotic
process. Note that Pal800 used a curatedARGdatabase and did not consider the inclusion
of false positives. Moreover, their GO analysis only provides a general overview of the
functional composition of those environments. In contrast, a more detailed analysis was
obtained by looking at the results fromMetaMLP using the specialized ARGs database.
Overall, the same trendwas observedwhen comparing both analysis (MetaMLP, Pal800).
For example, the tetracycline category had the highest relative abundance in the human
microbiome, sulfonamide shows the highest relative abundance in the wastewater envi-
ronment, the relative abundance of the beta-lactamase class was higher in the freshwater
compared to the wastewater and both are higher than human gut and soil environments.
Pal800 also performed a composition profile of the mobile genetic elements present in
the microbiomes. It has shown that wastewater, freshwater and soil environments had
a higher relative abundance compared to the human gut. Interestingly, for MetaMLP
the GO response to stress database conveyed a similar trend in relative abundance for
the biological process “establishment of competence for transformation”. This term is
associated with genetic transfer between organisms and is described by the GO con-
sortium as the process where exogenous DNA is acquired by a bacterium. In summary,
despite only using 67 real metagenomes, the functional annotation based on MetaMLP
described a very similar trending for relative abundances when compared to the Pal800
study, indicating a real scenario usage of MetaMLP.

4 Conclusions

MetaMLP is an alignment-free method for profiling metagenomic samples to specific
target group of proteins (e.g., ARGs, pathways, GO terms) using a machine learning
classifier. It uses sequence embeddings to represent protein/DNAsequences as numerical
vectors and a linear classifier to discriminate between protein functions. Results show
that MetaMLP has a comparable performance to the alignment-based method Diamond,
and tends to identify more reads. Remarkably, MetaMLP is around 50x faster than
Diamond. MetaMLP can be trained using any collection of protein sequences (reference
database) and has a very low memory footprint for the specialized databases used in this
paper. Finally, MetaMLP is open sourced and freely available at https://bitbucket.org/
gaarangoa/metamlp/src/master/.
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Abstract. With the availability of more than half a million SARS-CoV-2
sequences and counting, many approaches have recently appeared which aim
to leverage this information towards understanding the genomic diversity and
dynamics of this virus. Early approaches involved building transmission networks
or phylogenetic trees, the latter for which scalability becomes more of an issue
with each day, due to its high computational complexity.

In this work, we propose an alternative approach based on clustering
sequences to identify novel subtypes of SARS-CoV-2 using methods designed
for haplotyping intra-host viral populations. We assess this approach using clus-
ter entropy, a notion which very naturally captures the underlying process of viral
mutation—the first time entropy was used in this context. Using our approach,
we were able to identify the well-known B.1.1.7 subtype from the sequences of
the EMBL-EBI (UK) database, and also show that the associated cluster is con-
sistent with a measure of fitness. This demonstrates that our approach as a viable
and scalable alternative to unveiling trends in the spread of SARS-CoV-2.

Keywords: Clustering · Viral strains · Viral subtypes · Entropy · Fitness

1 Background

A novel coronavirus, responsible for severe acute respiratory syndrome (SARS-CoV-2)
was first detected in Wuhan, China at the end of 2019 [35,36], and its outbreak was
declared a pandemic in March 2020 by the World Health Organization (WHO). As of
the end of 2020, this virus was found in at least 219 countries, with over 70 million
infected [34], and this situation continues to change on a weekly basis. As the virus
spreads across the globe, it continues to mutate, as evidenced by the more than half a
million sequences that have been collected by public databases such as GISAID [12]
and COG-UK [10]. This mutational variability can be used to understand the genomic
diversity and dynamics of SARS-CoV-2, and to generate hypotheses on how the virus
has spread. Various types of approaches exist in order to leverage this sequence data,
such as building transmission networks of infection. An example of such an approach
is [29], where the authors show that the network is scale-free—few genomic variants
are responsible for the majority of possible transmissions. Other approaches involve
the construction of a phylogenetic tree [14,24] of evolution of the virus. In this latter
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case of tree building approaches, the number of sequences currently available is already
two orders of magnitude beyond what can be processed, at least all at once [14,24,
33]. All of these approaches are, moreover, confounded by the presence of gaps in
the sequences, which are prevalent even after some combination of alignment, error-
correction, filtering of unreliable reads, trimming, etc.., is applied [12,19].

A third alternative to studying the mutational variability of SARS-CoV-2 could
make use of the information obtained by clustering sets of sequences. While indi-
vidual sequences are often unique, the sheer number of sequences available (e.g., in
GISAID) is expected to nonetheless unveil meaningful groups and trends. Moreover,
since most clustering techniques are much faster than, e.g., tree building [14,24], it can
easily scale to the full size of the current datasets. There is a natural correspondence
between clusters of similar sequences and subtypes, such as the so-called B.1.1.7, which
was first detected very recently in the United Kingdom [32]. While the B.1.1.7 subtype
(or variant) only differs from the SARS-CoV-2 lineage by a few dozen mutations, it
has been shown to be between 40–80% more transmissible [32]—see [13] for the most
recent updates. This motivates the early detection and characterization of future sub-
types which have the potential to be more contagious, based on how current subtypes,
i.e., their sequence content, correlate with contagiousness.

In this work, we cluster sets of sequences from both GISAID [12] and EMBL-
EBI [1]. We use, as cluster centers, the subtypes inferred by CliqueSNV [21]—a tool
which is designed for finding viral variants from sequencing data. We show that this
approach outperforms standard approaches for clustering (categorical data) such as k-
modes, in terms of the cluster entropy [22] attained. While entropy is an ideal measure
of the quality of a clustering in this context, this is the first time (that we know of) that
entropy was used in the context of finding viral subtypes. We validate our clustering
approach from an experimental point of view by correctly detecting (based on meta-
data) the B.1.1.7 subtype from EMBL-EBI (UK) [1] sequences taken from the begin-
ning of October to the middle of December. To further strengthen this result, we assess
the selective fitness of a subtype, based on the number of sequences of the correspond-
ing cluster, and how this changes over time [28]. We show that the cluster obtained
from our approach corresponding to the B.1.1.7 subtype consistently has the highest
fitness over time. This illustrates the utility of our approach for finding novel subtypes
which have the potential to become pervasive in the population. Additionally, we use
the information from clustering to patch gaps in the sequences. This applies in partic-
ular to sequences collected before March, when SARS-CoV-2 sequencing efforts were
in their infancy. Since cluster entropy is so fitting to this setting, we aim to fill gaps in
sequences with the objective of minimizing the entropy of the result.

This paper is structured as follows. In Sect. 2, we detail our approach to cluster-
ing and gap filling. In Sect. 3, we specify several ways of assessing these approaches,
namely, cluster entropy and the fitness coefficient. In Sect. 4, we give the results of our
clustering and gap filling approach on the GISAID and EMBL-EBI datasets. Section 5
then concludes the paper with a discussion of the contributions of our approach, in light
of these results.
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2 Clustering Methods

We cluster sequences of SARS-CoV-2 based purely on sequence content, and under no
a priori hypothesis about the relationships between these sequences, i.e., it is unsuper-
vised. In this study we use sequences from the GISAID [12] database, as well as that of
EMBL-EBI [1]. The clustering techniques we use are described in the following.

2.1 CliqueSNV Based Clustering

For clustering viral subtypes, we propose to use existing tools that are used to identify
subtypes of the intra-host viral populations from NGS data reviewed in [20], e.g., Sav-
age [4], PredictHaplo [25], aBayesQR [2], etc. In this work, the setting is slightly differ-
ent, where the data consists of large collections of inter-host consensus sequences gath-
ered from different regions and countries around the world [1,12]. We expect, however,
that such tools are appropriate at this scale, that is, the “host” is now an entire region
or country, and we reconstruct the variants and their dynamics within these regions or
countries. The SARS-CoV-2 sequences in GISAID are consensus sequences of approx-
imate length 30K. Such sequences by quality and especially length have similar prop-
erties as PacBio reads. We choose CliqueSNV since it performed very well on PacBio
long reads [21]. We use default parameters to run CliqueSNV, setting the minimum
cluster frequency to be at least 1% of the population.

2.2 k-modes Clustering

We also considered known general techniques for clustering from the literature as a
baseline for comparison. Since we are clustering sequences, which are on the categories
A, C, G, T (and –, a gap), we chose k-modes [15,16] for this purpose. This approach
is almost identical to k-means [3,23], but it is based on the notion of mode (rather
than Euclidean mean), making it appropriate for clustering categorical data. Indeed, the
Euclidean mean of three nucleotides has little meaning in this context, and may not even
be well-defined. An example of the latter is when the “distance” from A to G is differ-
ent than from G to A. A similar observation was made in the context cancer mutation
profiles [9] in the form of absence/presence information. Treating these as categories
in using k-modes (rather than as 0’s and 1’s in using k-means) resulted in a cluster-
ing approach [7] that, when used as a preprocessing step, allowed cancer phylogeny
building methods to attain a higher accuracy [8], and in some cases with much lower
runtimes [17].

The mode q of a cluster C of sequences is another “sequence” (on A, C, G, T, –)
which minimizes

D(C, q) =
∑

s∈C

d(s, q), (1)

where d is some dissimilarity measure (such as Hamming distance) between the
sequences we are considering. Note that q is not necessarily an element of C. Aside
from finding the mode instead of the Euclidean mean, the k-modes algorithm operates
similarly to k-means, following the same iteration:
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1. Initialize cluster centers (or centroids);
2. Assign each sequence to the closest center based on dissimilarity d;
3. For each cluster resulting from this assignment, find its (new) center (Eq. 1); and
4. Return to step 2 until convergence (clusters do not change between 2 and 3).

In this work, we use k-modes with the following six combinations of different set-
tings. We first initialize cluster centers (1) by:

(a) choosing k random sequences from the dataset;
(b) choosing k centers that are maximally pairwise distant from each other; or
(c) using the centers (the subtypes) that were found by CliqueSNV.

Then, the dissimilarity d that we use is either the (i) Hamming distance, or (ii) TN-93
distance [30].

2.3 MeShClust

For comparison purposes, we also apply methods intended to cluster metagenomics
and multiviral sequencing data. We clustered the sequences using MeShClust [18], an
unsupervised machine learning method that aims to provide highly accurate clusterings
while not depending on any user-specified similarity parameters. However, the given
approach is intended to be used with datasets that contain multiple viral genomes. In
particular, it was validated on a multiviral dataset, containing 96 viral genomes with an
average length of 3K–12K bp. On the other hand, SARS-CoV-2 datasets usually contain
several hundred thousand sequences of a single virus with genome lengths averaging
around 30K bp.

2.4 Gap Filling

Finally, the set of SARS-CoV-2 sequences that we analyze contain missing nucleotides
due to gaps or deletions. This is particularly true with the GISAID dataset which
includes the range of collection dates from December 2019 to the end of March 2020,
when sequencing, alignment, etc., were less refined. This effort to fill the gaps is further
confounded by the presence of deletions, which could be confused with gaps.

Here, we attempt to use the centers (or consensus sequences) of the clusters we find
in order to perform gap filling. That is, rather than uniformly filling all sequences with,
e.g., a reference genome, for each individual sequence, we first find the cluster center
that it is closest to, and then fill the gaps based on this center.

3 Assessment of Clustering Viral Subtypes

Here, we present two methods for assessing a clustering. The first is cluster entropy, an
internal evaluation criterion that is very suited to this setting. The second is a measure
of the selective fitness of clusters, based on how they change over time.
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3.1 Cluster Entropy

Since we are comparing various clusterings of our data without a ground truth, we
need to consider an internal evaluation criteria. Most of the commonly used criteria
require some notion of a distance (or dissimilarity measure) between the objects being
clustered. For example, criteria such as the Calinski-Harabasz Index [6] or the Gap
Statistic [31] rely on the Euclidean distance, while the Davies-Bouldin Index [11] or the
Silhouette Coefficient [26] require this distance to be a metric. In our setting, with the
categories A, C, G, T and also the gap (–), it is unsure even what the distance between
two categories (e.g., A to G) would be, let alone whether this distance is Euclidean, or
a metric.

The cluster entropy [22], a criterion that was shown to generalize any distance-
based criterion, does not require a distance at all. This is ideal in our case, since it
does not make any assumptions about the relationships between the categories A, C,
G, T and gap (–). Since the information about such relationships is so lacking in this
context, forcing an arbitrary set of assumptions in using a distance-based criterion may
only bias the resulting analysis. Moreover, cluster entropy very naturally captures our
setting: that the population of viral sequences comes from a number of subtypes. This
is because cluster entropy can be formally derived using a likelihood principle based
on Bernoulli mixture models. In these mixture models, the observed data are thought
of as coming from a number of different latent classes. In [22], the authors prove that
minimizing cluster entropy is equivalent to maximizing the likelihood that set of objects
are generated from a set of (k) classes. This is very akin to this setting: the set of objects
are viral sequences, and they come from a set of k subtypes.

Cluster entropy relates closely to the widely-used notion of sequence logo [27]: a
graphical representation of a set of aligned sequences which conveys, at each position,
both the relative frequency of each base (or residue), and the amount of information
(the entropy) in bits. Hence, a clustering of viral sequences of low entropy gives rise
to a confident set of sequence logos (in terms of information), and can therefore shed
light on the possible biological function of viral subtype that each such logo (or related
motif) represents.

Formally, we have a set S of aligned sequences over a set X of columns. A given
column is then also a (vertical) “sequence” on the categories A, C, G, T and gap (–).
Let N = {A, C, G, T}, the four nucleotides, not counting the gap (–) character. Using
the notation of [22], the entropy Ĥx(C) of a set C of rows (a cluster of sequences) for
a column x ∈ X then

Ĥx(C) = −
∑

s∈C

∑

a∈N
px(s = a) log px(s = a). (2)

Note that px(s = a)—the probability that a sequence s ∈ C has nucleotide a in column
x—essentially amounts to the relative frequency of nucleotide a ∈ N in C in this
column x. The entropy ĤX(C) of set C of rows in a set X of columns is then

ĤX(C) =
∑

x∈X

Ĥ(x), (3)
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that is, we simply sum up the entropies of the columns. Since the set of X columns will
always the set of SNV sites of our sequences in this context, we will use simply Ĥ(C)
from hereon in. This way, Ĥ(C) is understood to be the entropy of a set (a cluster) of
sequences. The expected entropy [22] of a clustering C = C1, . . . , Ck of sequences is
then

H(C) =
1
n

k∑

i=1

niĤ(Ci), (4)

where ni = |Ci|, the number of elements in cluster Ci, and n is the total number of
sequences. For completeness, the total entropy of a clustering is simply the sum

T (C) =
k∑

i=1

Ĥ(Ci) (5)

of the individual entropies of each cluster (not weighted by ni).

3.2 Fitness

We use a mathematical model proposed in [28] for the calculation of a numerical mea-
sure of the fitness of a quasispecies. This model is used here to calculate the fitness of
a cluster, based on how its size (number of sequences it contains) changes over a series
of time steps. For a given set of clusters C1, . . . , Ck, Xi(t) denotes the size of cluster
Ci at a particular time step t. The fitness coefficient is calculated using hi which is the
cumulative sum of the Xi. Therefore, h(t) =

∑k
i=1 hi(t) is the total infected popula-

tion size at time t. This hi(t) is then normalized over h(t) and denoted by ui(t), that
is,

ui(t) =
hi(t)∑k
i=1 hi(t)

. (6)

Using cubic splines, ui(t) and h(t) are interpolated over the time period and the deriva-
tives u̇i(t) and ḣ(t) are calculated. The fitness function gi, for each cluster Ci is then
defined as

gi(t) =
u̇i(t)
ui(t)

+
ḣ(t)
h(t)

. (7)

The fitness coefficient ri, which is the average fitness over the time period T (composed
of the time steps t) for cluster Ci is then

ri =
1
T

∫ T

1

gi(t)dt. (8)

In order to reduce sampling error, we use the Poisson distribution to draw random
samples. For each cluster at each time step, a sufficiently large number of random sam-
ples is drawn from the Poisson distribution on Xi(t) as the expectation of the interval.
Then Xi(t) is replaced by the mean value of these random samples. This is repeated
a sufficiently large number of times (e.g., 100) to calculate a set of Poisson-distributed
sizes. The fitness coefficient calculation is then applied on each separately and a confi-
dence interval (e.g., 95%) of this fitness coefficient is obtained.
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4 Results

Here we report the results of our approach of clustering and gap filling using 2 datasets.
The first dataset consists of sequences submitted to the GISAID [12] database from
December 2019 to November 2020. This dataset contains sequences from all over the
world. The second dataset consists of sequences submitted to the EMBL-EBI [1,10]
database from the beginning of October 2020 to the middle of December 2020. This
dataset comprises sequences from various locations in the UK during the period of
rapid spread of the B.1.1.7 subtype. For both datasets, we align the sequences and trim
the first and last 50 bp of the aligned sequences.

4.1 Analysis of GISAID Data

Using our technique involving CliqueSNV, we clustered the data to identify at most 66
subtypes, which vary in proportion between December 2019 and November 2020. In
this case, a k of 66 was needed in order for the minimum cluster frequency to be at least
1% of the population. We report the relative distributions of these different subtypes in
Fig. 1 and Fig. 2, in a similar way to that of Fig. 3 of [24].

Fig. 1. Subtype distribution (GISAID dataset, 15-day window, relative count)

Table 1 gives an assessment of the various clusterings computed, in terms of both
the expected entropy (Eq. 4) and total entropy (Eq. 5). While any form of clustering
achieves a better expected (and total) entropy than not clustering at all, our CliqueSNV
based approach tends to outperform all other forms of clustering using either Hamming
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Fig. 2. Subtype distribution (GISAID dataset, cumulative, relative count).

or TN-93 distance. MeShClust [18] was not run due to this dataset being prohibitively
large (see Sect. 2.3). Finally, by filling gaps in sequences based on the closest cluster
center, we achieve an even lower expected (and total) entropy. This illustrates the appro-
priateness of this cluster based approach for filling gaps. For example, the entropy of
the dataset without clustering remained high after filling gaps (based on the consensus
for the entire dataset).

Table 2 reports runtimes of the various stages of this analysis, and Table 3 compares
runtimes of CliqueSNV and k-modes clustering. We note, given the latter table, that
our CliqueSNV based method had a slightly lower runtime than k-modes, despite it
performing better overall.

4.2 Analysis of EMBL-EBI Data

We then clustered the data from the EMBL-EBI database to identify 15 subtypes which
vary in proportion between the beginning of October 2020 and the middle of December
2020. Since the data here are over a shorter time span (i.e., are smaller) and are more
uniform, a k of 15 was sufficient for the minimum cluster frequency to be at least
1% of the population in this case. It is for the same reason that it was feasible to run
MeShClust [18] in this case, even though it was only able to infer 3 clusters from this
dataset.

Table 4 shows the F-1 score for all analyzed methods. CliqueSNV outperformed all
other methods, as it produced a clustering with all of the B.1.1.7 sequences residing
in a single cluster, while only 1.30% of the sequences in this cluster did not belong
to the B.1.1.7 subtype. For k-modes, sequences belonging to the B.1.1.7 subtype were
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Table 1. The expected entropy (Eq. 4) and total entropy (Eq. 5) of the GISAID sequences without
clustering (i.e., considered as a single cluster containing all sequences), and when clustering using
each of the six combinations of settings mentioned in Sect. 2.2, both without filling gaps and with
gap filling. The best performing method (lowest entropy) in each case is in bold font.

k-modes setting
(initialization,
distance)

Without gap
filling

With gap
filling

Expected entropy Total entropy Expected entropy Total entropy

Without clustering 9536.89 9536.89 8417.89 8417.89

Random centers,
Hamming

123.00 3170.60 109.21 2474.30

Random centers,
TN-93

127.32 4401.18 111.05 3470.03

Pairwise distant,
Hamming

422.65 4651.23 294.98 3629.47

Pairwise distant,
TN-93

273.34 3500.14 256.44 3007.07

CliqueSNV,
Hamming

110.58 2585.29 90.42 2308.95

CliqueSNV, TN-93 121.87 2379.46 100.85 2117.40

Table 2. Runtimes of the different stages of the algorithm for the GISAID dataset, which contains
199240 sequences. All stages were executed on a PC with an Intel(R) Xeon(R) CPU X5550
2.67GHz x2 with 8 cores per CPU, DIMM DDR3 1333 MHz RAM 4 Gb x12, and running the
CentOS 6.4 operating system.

Algorithm stage Time in seconds

CliqueSNV (inferring subtypes) 2405.08

CliqueSNV (finding closest subtypes) 2324.34

Gap filling 2740.32

Entropy computation 1254.22

Total 8723.96

Table 3. Runtimes of CliqueSNV and k-modes clustering using random centers and Hamming
distance for the GISAID dataset, which contains 199240 sequences. Both methods were executed
on the same PC mentioned in Table 2.

Clustering method Time in seconds

CliqueSNV 4729.42

k-modes 4922.44
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Table 4. F-1 score for CliqueSNV, k-modes and MeShClust. The F-1 score major is the F-
1 score when only considering the cluster with the largest number of B.1.1.7 sequences, while
F-1 score all is the F-1 score when considering all clusters containing B.1.1.7 sequences.

Method F-1 score major F-1 score all

Clique SNV 0.99 0.99

k-modes 0.24 0.003

MeShClust 0.11 0.11

spread over five clusters, with one cluster corresponding to 97.45% of these sequences.
In this cluster, 86.54% of the sequences did not belong to the B.1.1.7 subtype, how-
ever. MeShClust produced a clustering with all of the B.1.1.7 sequences residing in
one cluster, while 90.68% of the sequences in this cluster did not belong to the B.1.1.7
subtype.

We report the relative distributions of these different subtypes in Fig. 3. We report a
weekly moving average, since a weekly oscillation in SARS-CoV-2 data has been noted
in [5]. One will notice, in Fig. 3, the sharp increase of the relative proportion of a certain
subtype (in red) to more than a third of the population. We confirm from metadata, that
this indeed corresponds to the B.1.1.7 variant that was first identified in studies such
as [32].

Fig. 3. Subtype distribution (EMBL-EBI dataset, weekly window, relative count), produced by
CliqueSNV. The red subtype contributes to sequences that correspond to the B.1.1.7 lineage.
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Fig. 4. The number of sequences belonging to the B.1.1.7 lineage per cluster for CliqueSNV, k-
modes clustering and MeShClust. For CliqueSNV, all sequences are contained in 1 cluster (out
of a total of 15). The k-modes clustering, on the other hand, reported that B.1.1.7 sequences are
contained in 13 out of 15 clusters, with counts ranging from 1 to 6327 sequences per cluster.
Finally, MeShClust was only able to produce 3 clusters, where one cluster contained all B.1.1.7
sequences (with 90.86% of the sequences in this cluster not belonging to this lineage).

Figure 4 gives the number of sequences from Fig. 3 that belong to this B.1.1.7 lin-
eage by mid December 2020, which shows how accurately our approach has detected
this subtype. For completeness, we report the results for gap filling in this case. The
expected entropy for the gap-filled clustering is 75.73 for CliqueSNV, and 94.16 for k-
modes, while total entropy is 986.48 for CliqueSNV and 2074.12 for k-modes. Entropy
results for MeShClust are not reported since it only found 3 clusters. This analysis illus-
trates the ability of our clustering approach to identify subtypes which are known in the
literature. Interestingly enough, the study of [32] is based on an approach of build-
ing a phylogenetic tree—this demonstrates our approach, which is based on clustering
sequences, as a viable alternative.

Because our method detected one subtype which tends to dominate the population
in this EMBL-EBI data, we wanted to see if this is consistent with a cluster-based fitness
coefficient, i.e., that of Sect. 3.2. In this case, we have k = 15 clusters, and we chose our
time steps t to be intervals of one week over the period of the beginning of October to
the middle of December. The size Xi(t) of each cluster Ci in each week t was obtained,
and each fitness coefficient ri was computed accordingly (Eq. 8). In order to reduce
sampling error, we drew 2000 random samples from the Poisson distribution on Xi(t)
according to Sect. 3.2. We repeated this 100 times, and we report the 95% confidence
interval of the resulting coefficients of the clusters obtained with CliqueSNV centers
using Hamming distance in Table 5, and using TN-93 distance in Table 6. We note that
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Table 5. The 95% confidence interval of the fitness coefficient of each of the 15 clusters of the
EMBL-EBI data obtained using CliqueSNV centers and Hamming distance. The cluster (number
6) with the highest fitness is in bold font, and corresponds to the B.1.1.7 subtype.

Cluster Interval lower bound Interval upper bound

1 0.016738872 0.016740732

2 0.048094793 0.04811301

3 0.03496386 0.035002021

4 0.047263532 0.047277361

5 0.014669158 0.014671058

6 0.083354305 0.083409274

7 0.02608419 0.026103458

8 0.041597557 0.041607292

9 0.066545115 0.066795373

10 0.045460704 0.045478018

11 0.015351276 0.015355419

12 0.029337299 0.029350051

13 0.049745178 0.049775704

14 0.008006433 0.008007678

15 0.013760131 0.013762324

Table 6. The 95% confidence interval of the fitness coefficient of each of the 15 clusters of the
EMBL-EBI data obtained using CliqueSNV centers and TN-93 distance. The cluster (number 6)
with the highest fitness is in bold font, and corresponds to the B.1.1.7 subtype.

Cluster Interval lower bound Interval upper bound

1 0.017183656 0.017185731

2 0.034293094 0.034331868

3 0.034447719 0.034479513

4 0.058367389 0.058395131

5 0.015729171 0.015731727

6 0.081862323 0.08193304

7 0.021651118 0.021659687

8 0.041761956 0.041788087

9 0.037012668 0.037036312

10 0.036169998 0.036178391

11 0.015727056 0.015730951

12 0.028816624 0.028835135

13 0.046192409 0.046213525

14 0.00913054 0.009132086

15 0.014634381 0.014637622
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similar results are obtained with either distance. In any case, these coefficients confirm
that the cluster with ID 6, identified in Fig. 4 to correspond to this B.1.1.7 subtype,
is by far the most fit. This highlights the ability of our clustering based approach for
detecting, based purely on sequence content, novel subtypes which have the potential
of becoming dominant in the population.

5 Conclusions

In this work, we propose a novel method for identifying subtypes of SARS-CoV-2 by
clustering the sequences of the virus. The first novelty of this approach is the use of a
method (CliqueSNV) which was designed to discover viral subtypes from an intra-host
population (e.g., a single patient), to detect subtypes within an large inter-host popula-
tion, i.e., those sequences submitted to GISAID. The other novelty of our approach is
the use of the cluster entropy criterion to assess the quality of our clustering. Since this
inter-host population is really being generated from some number (k) of subtypes, it fol-
lows that entropy models this setting exactly: the lower the entropy, the more likely this
is the case. We show that our clustering approach based on CliqueSNV outperforms
other standard clustering techniques, such as k-modes, in terms minimizing entropy.
Since our clustering achieves such a low entropy, it is an indication that we found the
most likely subtypes which represent the data. Because of this, we also employ a pro-
cedure to fill gaps in sequences by choosing the closest subtype, rather than using, e.g.,
a reference sequence. Doing so results in an even lower entropy, indicating that this is a
better way to fill gaps.

We validated our approach on the EMBL-EBI dataset. This method very clearly
identified the B.1.1.7 subtype corresponding to cluster 6 in Table 5. Since our approach
clusters sequences purely on genomic content, we also use a measure of cluster fitness to
predict how contagious the identified subtypes may be. Indeed the fitness of this B.1.1.7
subtype (its corresponding cluster) was outstanding, further strengthening this result,
and illustrating how this method could be used to detect future variants of concern.

In conclusion, we clearly demonstrate that clustering is a suitable alternative to
phylogenetic methods for identifying strains or subtypes. Moreover, since clustering is
much faster than constructing phylogenies (which is a computationally intense proce-
dure), our approach is much more scalable to the size of the current datasets. Indeed,
by considering the entire dataset all at once, when coupled with fitness, our approach
can be a powerful tool for pinpointing a subtype which has the potential to become as
pervasive as the B.1.1.7 in the UK, even at the moment when it comprises as little as
1% of the current population.
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