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ABSTRACT

We analyze models of genome evolution based on both restricted and unrestricted double-
cut-and-join (DCJ) operations. Not only do our models allow different types of operations
generated by DCJs (including reversals, translocations, transpositions, fissions, and fusions)
to take different weights during the course of evolution, but they also let these weights
fluctuate over time. We compare the number of operations along the evolutionary trajectory
with the DCJ distance of the genome from its ancestor at each step, and determine at what
point they diverge: the process escapes from parsimony. Adapting the method developed
by Berestycki and Durrett, we approximate the number of cycles in the breakpoint graph of
a random genome at time t and its ancestral genome by the number of tree components in a
random graph (not necessarily an Erdös–Rényi one) constructed from the model of evolu-
tion. In both models, the process on a genome of size n is bound to its parsimonious estimate
up to t � n=2 steps.

Keywords: breakpoint graph, double-cut-and-join, Erdös–Rényi graphs, parsimony binding,

random walk.

1. INTRODUCTION

The introduction of the ‘‘double-cut-and-join’’ (DCJ) methods by Yancopoulos et al. (2005), and

in a slightly different formulation by Bergeron et al. (2006), greatly invigorated the field of genome

distance algorithmics. DCJ incorporated the operation of interchanging blocks of genes between arbitrary

regions of a chromosome (including ‘‘block transposition’’ of neighboring regions) to the two previously

studied operations of reversing of a block of genes in a chromosome (‘‘inversion’’) and interchanging the

prefixes or suffixes of two chromosomes (‘‘reciprocal translocation,’’ which formally includes chromosome

fusion and fission). As a result, the exact DCJ distance is easily calculated in linear time, avoiding the cumbersome

work necessitated by the ingenious solution (called ‘‘HP’’) of Hannenhalli and Pevzner (1995a) and Hannenhalli

and Pevzner (1995b) a decade earlier, where only reversals and reciprocal translocations were considered.

Edit distances for comparing genomes, such as DCJ and HP, minimize the number of steps, chosen from

a small repertoire of operations, to transform one genome into another. A mistaken comment sometimes

1Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada.
2Department of Mathematics, Columbia University, New York, New York, USA.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 30, Number 2, 2023

# Mary Ann Liebert, Inc.

Pp. 118–130

DOI: 10.1089/cmb.2021.0468

118

D
ow

nl
oa

de
d 

by
 D

av
id

 S
an

ko
ff

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
2/

25
/2

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



heard, whether approving or critical, is that these methods assume that ‘‘evolution takes the shortest path.’’

The methods, however, make no assumption at all about the preferences of the evolutionary process; they

are simply tools for inferring evolutionary history.

The minimization criterion basic to edit distances makes it a maximum parsimony method. As such it

is model-free, unlike probability-based models. Nevertheless, under any reasonable model of evolution,

calculations or simulations show that for a genome that has only moderately evolved, DCJ or similar

methods inevitably recover the true number of steps that actually occurred (cf. Berestycki and Durrett,

2006; Jamshidpey and Sankoff, 2013). In this sense, evolution has indeed ‘‘followed’’ a most parsimonious

path, but this is only an inferential result, not an evolutionary tendency. We say that the evolution is

‘‘parsimony-bound’’ during this initial period.

As a genome diverges more substantially from its initial state, however, parsimony methods will

eventually find a shorter path than the one actually traversed by the evolving genome. Parsimony under-

estimates the length of the evolutionary trajectory. When this occurs, we can say that evolution ‘‘escapes

from parsimony.’’

The nature of this escape and the point at which it happens depend on the stochastic process modeling

evolution and the distance measure comparing points on the sample path to the starting point. Little

mathematical work has been done relevant to this direct question, although there has been much research on

probabilistic modeling of evolution using DCJ operations, some of which is reviewed in Biller et al. (2015).

In the present article, we model the evolution of genomes as a time-continuous Markov jump process on the

space of genomes, for which the different types of genomic operations (e.g., reversals, translocations, and

transpositions) generated by the restricted (Yancopoulos et al., 2005) or unrestricted (Bergeron et al., 2006)

DCJs occur at different rates, and use DCJ as a tool for tracking it.

A basic result in this field is due to Berestycki and Durrett (2006), who found that escape from parsimony

for a random transposition (pairwise exchange) process does not occur before n=2 steps, where n is the

number of genes in the genome.

2. GENOMES AND DCJ OPERATIONS

The genes or markers in a genome can be represented by different positive integers. We denote by Gn‚ k

the space of all genomes with n specific genes (or markers), denoted by 1‚ . . . ‚ n, exactly k linear chro-

mosomes, and a number of circular chromosomes (possibly 0). For the purpose of this article, it is most

convenient to represent a genome G 2 Gn‚ k as an alternating graph G = (V(G)‚ E(G)) on 2(n + k) vertices, 2n

of which are of degree 2 and the rest are of degree 1, as in Figure 1. More precisely, we denote by + i and

- i the extremities (head and tail) of gene (or marker) i 2 [n] : = f1‚ . . . ‚ ng, and denote by sj, j 2 [2k], the

telomeres of k linear chromosomes, that is,

FIG. 1. DCJ operations. The dotted and solid lines represent genes and adjacencies, respectively. The DCJ operators

act on the adjacencies e = (a‚ b) and e0 = (c‚ d). DCJ, ‘‘double-cut-and-join.’’ Adjacencies e and é pertain to the same

linear chromosome (I) and different linear chromosomes (II) respectively.
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V(G) = f�1‚ . . . ‚ � ng [ fs1‚ . . . ‚ s2kg:

On the contrary, let E1(G) be the invariant for all genomes G, and define it to be the set of edges

f - i‚ + ig, for i 2 [n], and let E2(G) vary for different genomes G and be defined as a perfect matching on

V(G). Then, E(G) consists of the edges in E1(G) and E2(G), where multiple edges are allowed. For instance,

any circular chromosome of size one, including only a gene (marker) i, is represented in fact by a double

edge between its two extremities - i and + i. We call E1(G) and E2(G) the set of genes and set of

adjacencies, respectively, of genome G. We notice that jE2(G)j = n + k, for any G 2 Gn‚ k. We suppose

the edges in E1(G) and E2(G) are dotted and solid, respectively. The solid edges that are incident to the

telomeric vertices fs1‚ . . . ‚ s2kg are called telomeric edges, and those vertices in f�1‚ . . . ‚ � ng that are

adjacent to fs1‚ . . . ‚ s2kg are called telomeric gene extremities.

It is then clear that the graph G is a union of disjoint alternating paths (linear chromosomes) and cycles

(circular chromosomes). Indeed, deg ( + i) = deg ( - i) = 2 and deg (sj) = 1, for any i 2 [n] and j 2 [2k]. Note

that, under this definition, a linear chromosome may be null (i.e., with no genes). In this case, the null

chromosome only contains two telomeres si‚ sj and their connecting edge fsi‚ sjg.
The main purpose of this article is to study some classes of DCJ Markov processes, modeling evolution

of genomes, in which the probabilities of choosing two different types of DCJ operators to act on the current

genome state are unequal. To classify the DCJ operators into two natural types, one including the reversals

and the other including the nonreversals when the DCJ operator acts on two edges of the same chromo-

some, we need to assign an orientation to the connected components (chromosomes) of each genome in

Gn‚ k. To establish this, recall that an orientation of a graph G is a digraph whose underlying graph is G. In

other words, we can assign a direction to each edge fu‚ vg 2 E(G) by assigning exactly one of the two

possible arcs (u‚ v) or (v‚ u) to it.

An orientation of G is then a digraph obtained from G by assigning a direction to each of its edges.

Clearly, there are 22(n + k) orientations for G 2 Gn‚ k. Let C be a cycle component, and let P be a path

component of G. A direction of C, namely C
!

, is an orientation for which C
 

is a directed cycle, that is

deg + (v) = deg - (v) = 1, for v 2 V(C), where deg + (v) and deg - (v) denote the outdegree and indegree of v.

Similarly, one can give a direction to a linear chromosome P, by choosing one of its telomeres as a starting

point. To be more precise, an orientation P
!

is called a direction for P, if it is a directed path. Hence, there

are exactly two directions for each component of G. Denoting by j(G) the number of connected compo-

nents of G, this implies that the number of directions of G is 2j(G).

Now, let x be the gene with the smallest label in a circular chromosome C (or a linear chromosome P,

respectively). The standard direction is the unique direction of C (P, respectively) for which the direction of

f - x‚ + xg is given by arc ( - x‚ + x). Moreover, the standard direction of G is the unique orientation of that

for which each component is assigned to its standard direction. We henceforth assume that each genome

G 2 Gn‚ k is furnished with its standard direction.

A DCJ operation is a genomic operation that cuts two given adjacencies (edges) of a genome and rejoins

the free extremities of the genes involved in one of the two possible ways (Fig. 1). Two types of the DCJ

operations are defined as follows. For G 2 Gn‚ k and e = (a‚ b)‚ e0 = (c‚ d) 2 E2(G), a first-type DCJ (DCJ-1

or d1) operation, denoted by d1(e‚ e0) is defined by G0 = G � d1(e‚ e0), where V(G0) = V(G), E1(G0) = E1(G),

and

E2(G0) = E2(G) [ f(a‚ c)‚ (b‚ d)gnfe‚ e0g:

Similarly, a second-type DCJ (DCJ-2 or d2) operation on G is defined by G00 = G � d2(e‚ e0), where

V(G00) = V(G), E1(G00) = E1(G), and

E2(G00) = E2(G) [ f(a‚ d)‚ (b‚ c)gnfe‚ e0g‚

as depicted in Figure 1.

Note that for e‚ e0 taken from the same chromosome, d1(e‚ e0) is an inversion (reversal) operation, as

shown in Figure 1-I. From the definition, Gn‚ k is closed under the DCJ operations, and the DCJ distance

between two genomes G1‚ G2 2 Gn‚ k, d(G1‚ G2), is the minimum number of DCJ operations required to

transform G1 into G2 or vice versa. Equivalently, this distance can be interpreted as the length of the

shortest path on the graph Gn‚ k with the set of vertices Gn‚ k where each pair of vertices are connected with

an edge if their DCJ distance is 1. The formula for the DCJ distance of two genomes can be given in terms

of the numbers of cycles and even paths in their breakpoint graph.
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In mathematical terms, letting T : = fs1‚ . . . ‚ s2kg and T 0 : = fs01‚ . . . ‚ s0
2k
g, the breakpoint graph of

two genomes G1‚ G2 2 Gn‚ k, denoted by BP(G1‚ G2), is a graph whose vertices are given by

f�1‚ . . . ‚ � ng [ T [ T 0 and whose edges are the adjacencies of G1 and G�2, that is, edges in E2(G1) and

E2(G�2) (multiple edges are allowed), where G�2 is obtained from G2 by changing the labels of its telomeric

vertices sj to s0j, for j = 1‚ . . . ‚ 2k. The adjacencies of G1 and G�2 are usually presented in two different

colors, say gray and black. We notice that every vertex of BP(G1‚ G2) obtained from a telomeric vertex of

G1 or G�2 has degree 1. The rest of the vertices of BP(G1‚ G2) are all of degree 2, that is each such vertex is

incident to exactly one gray edge and one black edge. Hence, BP(G1‚ G2) is the disjoint union of some

alternating cycles and 2k alternating paths (or lines). The DCJ distance between two genomes G1 and G2 is

then given by

d(G1‚ G2) = n - C(G1‚ G2) -
Pe(G1‚ G2)

2
‚ (1)

where C(G1‚ G2) and Pe(G1‚ G2) determine the number of cycles and the number of even paths in

BP(G1‚ G2), respectively (cf. Bergeron et al., 2006). A line is called a TT-line or with TT ends if both

telomeric vertices of that line belong to T. Lines with TT 0 or T 0T 0 ends are defined similarly. It is

straightforward to see that a line is even (of even size) if and only if it has TT 0 ends.

To measure the exact displacement of a genome G2, after performing some DCJ operators on it, with

respect to another genome G1, one needs to study the effects of different types of DCJ operators on

BP(G1‚ G2). To formulate this, in the same spirit of the standard direction assigned to linear and circular

chromosomes of a genome in Gn‚ k, we need to give a direction to the cycles and lines of a breakpoint graph.

This can be done by determining a start and an end point for a line. More precisely, the direction of a TT 0

line is given by traversing it, starting at its T telomeric vertex and ending at its T 0 telomeric vertex. For TT

or T 0T 0 lines, the starting point is the telomeric vertex with a smaller index.

On the contrary, a cycle can be traversed, starting at its gene extremity with the minimum index,

through the unique black edge incident to it. It is clear that the described direction of a cycle or a line of

BP(G1‚ G2) does not necessarily coincide with its orientation induced from the direction of edges in

genomes G1 and G2.

The effect of a DCJ operation on the distance between two genomes can be studied as follows. Let

G1‚ G2 2 Gn‚ k and e = [a‚ b]‚ e0 = [c‚ d] 2 E2(G2), where with a mild abuse of notation, by [a‚ b] = [a‚ b]G1‚ G2
,

we mean that the direction of e is from a to b, in the natural direction of BP(G1‚ G2), described above. Note

once again that this direction may be different from the direction of fa‚ bg in the genome G2. The DCJ

operation D1(e‚ e0) =DG1‚ G2

1 (e‚ e0) is defined on G2 by cutting e and e0 and joining a to c, and b to d.

Similarly D2(e‚ e0) =DG1‚ G2

2 (e‚ e0) cuts e and e0 and joins a to d, and b to c. Note that di and Di operations are

different due to the different orientations they use to join vertices.

Let ai : = d(G1‚ G2 � Di(e‚ e0)) - d(G1‚ G2). In fact, ai measures the displacement of the genome G2, with

respect to a reference genome G1, after a Di-DCJ operation is performed on it. If e‚ e0 are in two different

cycles of BP(G1‚ G2), then a1 = a2 = 1, since two cycles merge following the DCJ operation on e and e0, as

in Figure 2-III. If both are in one cycle (Fig. 2-IV), then D1 does not change the number of cycles or paths,

but D2 fragments it into two smaller cycles. Hence a1 = 0 and a2 = - 1. If they belong to one line (Fig. 2-V),

then, similarly to the cycle case, a1 = 0. In this case, D2 splits the line into a cycle and a line whose length

has the same parity as that of the original line (e.g., if the original line is of an even size, then so is the size

of the new line). In this case, since a new cycle is added, we get a2 = - 1. When one edge belongs to an odd

line (TT or T 0T 0 line) and the other belongs to an even line (TT 0-line), as in Figure 2-I, clearly, after splitting

and rejoining two lines together, both D1 and D2 operations result in an odd and an even line, which means

a1 = a2 = 0.

If both lines are odd, but all of their four telomeric vertices come from one genome, say with TT ends,

then both types of DCJ operator generate two odd TT-lines, that is, a1 = a2 = 0. If both are odd, one with TT

ends and the other with T 0T 0-ends, then D1 and D2 operations generate two TT 0-lines which are even, hence

a1 = a2 = - 1. For two even TT 0-lines, the D1 operation gives two odd lines, one with TT ends and the other

with T 0T 0 ends, while D2 operator gives two even TT 0-lines. Therefore, a1 = 1‚ a2 = 0. Finally, as shown in

Figure 2-II, if e belongs to a line and e0 belongs to a cycle, the cycle and line merge after implementing D1

or D2 operations. This gives rise to a line whose length has the same parity as that of the original one.

Hence in this case a1 = a2 = 1.
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3. DCJ EVOLUTION AND DCJ PARSIMONIOUS PATHS

As mentioned in the previous section, the reversals are, in fact, DCJ-1 operations. DCJ can also generate

translocations, fissions, and fusions. In addition, two consecutive DCJs may generate a genomic transpo-

sition or a block interchange operation (Yancopoulos et al., 2005; Bergeron et al., 2006; Fertin et al., 2009).

Consequently, DCJs provide a rich family of mathematical operations, which model the genomic evolution

of some species and their edit distances. We can model the DCJ evolution of genomes as a Markov jump

process on the space of genomes Gn‚ k. Given an initial weight p 2 [0‚ 1], let i1‚ i2‚ . . . be an i.i.d. sequence

of random variables with P(ik = 1) = p = 1 - P(ik = 2), for any k 2 N. The DCJ process X(p) = (X
(p)
t )t�0 starts

at genome X
(p)
0 = G0 2 Gn‚ k, and jumps at random times 0 � s1 < s2 < . . ., where fs1‚ s2‚ . . .g are points of

a Poisson process on R + , with rate 1.

At a jump time si, having X(p)
si

= G, we choose two different solid edges (a‚ b)‚ (c‚ d) 2 E2(G), uniformly

at random, without replacement, and let the random walk jump to G � dii
((a‚ b)‚ (c‚ d)). In other words, at

each time si, X(p) jumps to G � d1(e‚ e0) with probability pn‚ k : = p=f(n + k)(n + k - 1)g, and to G � d2(e‚ e0)
with probability qn‚ k : = (1 - p)=f(n + k)(n + k - 1)g, for any pair e 6¼ e0 2 E2(G). Equivalently, X(p) can be

considered a continuous-time-biased nearest-neighbor random walk on Gn‚ k starting at G0, for which at a

Poisson time si, it jumps to one of its neighbors with a probability proportional to its weight where the

weights of each d1-neighbor and each d2-neighbor of G are given by p and 1 - p, respectively. We can see

that, for p = 1=2, X(p) is a continuous-time (symmetric) simple random walk on Gn‚ k. Hereafter, we suppress

the superscript p when p is fixed and there is no risk of ambiguity.

We can generalize the above DCJ process as follows. Let p : = (pt)t�0, pt 2 [0‚ 1] for t 2 R + , be a given

function from R + to [0‚ 1]. To obtain X(p) = (X
(p)
t )t�0 from X(p), we modify the above definition by giving

FIG. 2. Effects of DCJ operations on the components of the breakpoint graph of two genomes. The DCJ operations

act on e = [a‚ b] and e0 = [c‚ d] for an odd line and an even line (I), a cycle and a line (II), two different cycles (III), and

one cycle (IV) or one line (V).
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the weight psk
and 1 - psk

to d1 and d2 operations, which can be performed on the current genome at each

jump time sk. Then, the probability of choosing each d1 operation and each d2 operation, at time sk, is given

by psk
=f(n + k)(n + k - 1)g and (1 - psk

)=f(n + k)(n + k - 1)g. In fact, X(p) is a special case of X(p), for pt = p;

t 2 R + .

Being parsimony-bound means that in transforming into another genome B, a genome A has evolved

along a shortest path to B. This is, in fact, the fastest way that A can be transformed into B through the paths

of evolution. Roughly speaking, any set of allowed genomic operations R on a space of genomes S, under

which the genome space is closed, induces an edit distance q on S that, for G1‚ G2 2 S, is defined as the

minimum number of elements of R needed to transform G1 into G2 or vice versa. Of course, we assume that

this is possible in finite steps, for any pair of genomes in S. When a random walk (nt)t�0 models the

evolution of genomes under R-operations, evolution is parsimony-bound up to time t, if

q(n0‚ nt) � t:

Setting S : =Gn‚ k, and letting R include all DCJ operations, the simulation results in Figure 3 show that

the parsimony binds the trajectory up to time cn, for c � 0:5. At each step, the DCJ distance is computed

using UniMoG (Braga et al., 2011; Hilker et al., 2012).

Berestycki and Durrett (2006) proved that the transposition random walk is bound to parsimony up to

time n=2. Counting the number of hurdles of a reversal random walk, and making use of their results, one

can see this also holds for the reversal walk up to the same time n=2 ( Jamshidpey and Sankoff, 2013). In

this study, we make use of the Berestycki-Durrett method to show that the same result is true for the

nonhomogeneous (biased) DCJ stochastic process defined above. To this end, we need a labeling mech-

anism that is updated at each jump of the DCJ process. The relabeling is important for constructing a

random graph process whose number of components estimates the number of cycles of the BP(X0‚ Xt), and

therefore the DCJ distance between the genomes X0 and Xt. A labeling of a genome G 2 Gn‚ k is a bijection

from E2(G) onto [n + k] : = f1‚ 2‚ . . . ‚ n + kg.
The labeling process L = (Lt)t�0 can be obtained from the DCJ process X as follows. We start from an

arbitrary label L0 = L̂0 for X0. From exchangeability, the results in the next theorems do not really depend on

any particular choice of L̂0. Let t be a jump time such that Xt jumps to Xt + : = Xt � di(e‚ e0) for

e = (a‚ b)‚ e0 = (c‚ d) 2 Xt. Let x : = minfa‚ b‚ c‚ dg, and let ~ux be the black edge of Xt, either e or e0, which is

incident to x, while ~vx be the other edge, that is, ~vx = fe‚ e0gn~ux. Similarly, let ux be the edge of Xt + , which is

incident to x after performing di(e‚ e0) on Xt, and let vx be the other new edge in Xt + that is created as a

result of joining the two other free gene extremities. We update the labeling process L by

FIG. 3. Simulation for the unrestricted DCJ model illustrating parsimony binding up to time cn, for c � 0:5. The

average DCJ distance estimates are based on 50 runs, where pt = p (p = 0‚ 0:5‚ 1) at a jump time t, if the randomly

selected edges involved in the DCJ operation are in the same chromosome, and pt = 0:5 if the edges are in two distinct

chromosomes; see Remark 2. The ancestral genome contains 1000 genes in 3 linear chromosomes of sizes 250, 350,

and 400.
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Lt + (w) =
Lt(~ux)

Lt(~vx)

Lt(w)

if w = ux

if w = vx

if w =2fux‚ vxg:

8<
: (2)

Using L and X, we can now define a random graph process Z = (Zt)t�0 whose number of tree components

estimates the number of cycles of the breakpoint graph, after a convenient rescaling. Let Z0 be the trivial

graph with vertices 1‚ 2‚ . . . ‚ n + k (representing the labels) and with no edges. Let (k1(i)‚ k2(i)) be the pair

of labels of two uniformly random edges (without replacement) in Xsi
, which is selected for a DCJ

operation at time si. Connect k1(i) and k2(i) by an edge in Zsi + , if they are not already adjacent in Zsi
. As a

matter of fact, the number of times at which the random sequence ((k1(i)‚ k2(i)))i2N: si<cn takes an ordered

pair of labels (‘‚ ‘0) 2 [n + k]2, ‘ 6¼ ‘0, is a Poisson random variable with mean cn=f(n + k)(n + k - 1)g.
Hence, the probability that each edge f‘‚ ‘0g that appears in the random graph is given by

1 - e - 2cn
(n + k)(n + k - 1) � 2cn

(n + k)(n + k - 1)
+ O(n - 2):

Thus, letting Z�cn be the Erdös–Rényi random graph on the vertex set [n + k] in which each edge is

independently present with probability 2c=n, the expected difference of number of edges in Zcn and Z�cn is of

order O(1). As the results from Bollobás (2001; Theorem 5.12) hold for Erdös–Rényi random graphs with

the parameter 2c=n, we get

E[T cn] = (1 - c(c))n + O(1)‚

where T cn denotes the number of tree components of Zcn, and for c > 0,

c(c) : = 1 -
1

2c

X1
j = 1

jj - 2

j!
(2ce - 2c)j:

In fact, c(c) = c, for 0 � c � 1
2
, and c(c) < c, for c > 1

2
. Similarly, once again from Bollobás (2001;

Theorem 5.12), we get

var(T cn) = O(n):

We can then easily see that the Erdös–Rényi random graph Z�cn approximates Zcn. In mathematical terms,

from the Chebyshev’s inequality, as n!1

T cn - (1 - c(c))n

bn

ffiffiffi
n
p ! 0‚ in probability‚ (3)

for any sequence (bn)n2N, with bn !1.

Before stating the main result of the article, we also need to count labels f‘‚ ‘0g picked at least twice by

(fk1(i)‚ k2(i)g)i: si<cn. More precisely, for any pair of labels f‘‚ ‘0g, let Icn(‘‚ ‘0) = Icn(‘0‚ ‘) = 1, if the random

sequence (fk1(i)‚ k2(i)g)i: si<cn takes f‘‚ ‘0g at least twice, and let it be equal to 0, otherwise. Letting

Icn =
P

‘‚ ‘0 Icn(‘‚ ‘0), the following lemma follows immediately.

Lemma 1. For any c > 0 and any sequence (bn)n�1 with bn !1, we have

Icn

bn

ffiffiffi
n
p ! 0‚ in probability‚

as n!1.

Proof. We have

E[Icn(‘‚ ‘0)] = P(Icn(‘‚ ‘0) = 1) = e - 2cn
(n + k)(n + k - 1)

X1
j = 2

2cn

(n + k)(n + k - 1)

� �j

=j! = O(n - 2)‚

and

var(Icn(‘‚ ‘0)) = P(Icn(‘‚ ‘0) = 1) - P(Icn(‘‚ ‘0) = 1)2 = O(n - 2):
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Thus E[Icn] = O(1) and var(Icn) = O(1), that means the number of edges in Zcn for which the corre-

sponding labels are taken more than once is negligible, and the lemma follows from the Chebyshev’s

inequality. ,

Theorem 1. Fix p = (pt)t�0 and c > 0. Let (bn)n�1 be any sequence for which bn !1, as n!1. Then,

as n!1,

d(X
(p)
0 ‚ X(p)

cn ) - c(c)n

bn

ffiffiffi
n
p ! 0‚ in probability: (4)

Proof. We follow the proof of Berestycki and Durrett (2006; Theorem 3) and adapt it for the DCJ

stochastic process. First, note that the number of paths of even length in BP(X0‚ Xcn) is bounded by 2k, and

hence,

Pe(X0‚ Xcn)

2bn

ffiffiffi
n
p ! 0‚

pointwise, as n!1. Using Equation (1), it then suffices to analyze the asymptotic behavior of C(X0‚ Xcn).

The number of cycles of size greater than 2
ffiffiffiffiffiffiffiffiffi
n + k
p

is less than
ffiffiffiffiffiffiffiffiffi
n + k
p

. Therefore, we only need to handle the

cycles whose sizes are less than or equal to 2
ffiffiffiffiffiffiffiffiffi
n + k
p

. To this end, we say a cycle in BP(X0‚ Xcn) is

nonfragmented, if it is the result of a finite number of merging events, without any fragmentation in its

history. Otherwise, it is called a fragmented cycle. Note that a fragmented cycle always has at least one

fragmentation event (either a fragmentation on a cycle or on a line) in its history. For any t � 0, denote by

C(f )
t and C(nf )

t the number of fragmented and nonfragmented cycles of BP(X0‚ Xt), respectively, with size less

than or equal to 2
ffiffiffiffiffiffiffiffiffi
n + k
p

.

Clearly, C(f )
cn is bounded by 2 times the number of fragmentation events, up to time cn, which results

in a fragmented cycle of size at most 2
ffiffiffiffiffiffiffiffiffi
n + k
p

, that is, a fragmented cycle with at most
ffiffiffiffiffiffiffiffiffi
n + k
p

edges

from Xcn. In order that a DCJ operation on two black edges e‚ e0, located in one connected component

of BP(X0‚ Xt), splits that component and produces a cycle of size less than 2
ffiffiffiffiffiffiffiffiffi
n + k
p

, e and e0 should be

in distance at most 2
ffiffiffiffiffiffiffiffiffi
n + k
p

, in BP(X0‚ Xcn), from each other. At each jump time si, regardless of the

value of psi
, the probability that (k1(i)‚ k2(i)) takes a pair of edges with the mentioned property is

bounded by 2
ffiffiffiffiffiffiffiffiffi
n + k
p

=(n + k - 1). Therefore, the number of such fragmentation events, up to time cn, is

bounded by a Poisson random variable with parameter cn � 2
ffiffiffiffiffiffiffiffiffi
n + k
p

=(n + k - 1) � 2c
ffiffiffi
n
p

. This implies that,

as n!1,

C(f )
cn

bn

ffiffiffi
n
p ! 0‚ in probability:

We notice that for any c � 0, any tree component K in Zcn represents either (i) a nonfragmented

component of BP(X0‚ Xcn), or (ii) those fragmented components of BP(X0‚ Xcn) for which a same pair of

labels for a DCJ operation is selected more than once (the number of the latter type of the components is

bounded by Icn). This can be easily verified by induction on the number of vertices of K. First note that the

claim is clear if K is a trivial component of Zcn (i.e., a component with only one vertex a), as the

corresponding adjacency a in X0 has never been chosen for any DCJ event, up to time cn, and therefore, it is

not involved in any fragmentation event up to that time. For c > 0 and for a tree component K with m � 2

vertices, in Zcn, suppose e is the last edge of K that was added at some time s � cn to form K.

Then K 0 : = Knfeg contains two tree components, say K1‚ K2, each of which has at most m - 1 vertices,

and so from the induction hypothesis, Ki, i = 1‚ 2, is either a type (i) or a type (ii) component of Zs - . If K1

and K2 are both of type (i), that is, corresponding to nonfragmented components of BP(X0‚ Xs - ), then e

corresponds to a coagulation event at time s by which two nonfragmented components of BP(X0‚ Xs - )

merge. So in this case, the resulting component K is of type (i) at times. Now if the labels of the end points

of any edge in K are chosen again for another DCJ operation, during the time interval (s‚ cn), then K is a

type (ii) component of Zcn; otherwise it remains a type (i) component of that. On the contrary, as K1and K2

are subtrees of K, if at least one of them is of type (ii) at s - , then so is K at time cn.
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Now, as the number of even paths is bounded by 2k, the number of cycles or tree components of size

greater than 2
ffiffiffiffiffiffiffiffiffi
n + k
p

is both bounded by
ffiffiffiffiffiffiffiffiffi
n + k
p

, and from Lemma 1, the number of labels (‘‚ ‘0) picked at

least twice by (fk1(i)‚ k2(i)g)i: si<cn is very small, we can deduce that the tree components of Zcn can

approximate C(nf )
cn . More precisely,

T cn - C(nf )
cn

bn

ffiffiffi
n
p ! 0‚ in probability‚

as n!1. Therefore Equation (3) yields

C(nf )
cn - (1 - c(c))n

bn

ffiffiffi
n
p ! 0‚ in probability‚

as n!1, which finishes the proof. ,

Remark 1. For c � 0:5, the convergence in Equation (4) implies that DCJ stochastic evolution X is

bound by parsimony, since c(c) = c.

Remark 2. As Theorem 1 holds for any deterministic (pt)t�0, and its proof is indeed independent of the

choice of pt at any jump time t, it can be easily extended to more complicated stochastic processes (pt)t�0

with values in [0‚ 1]. For instance pt may be a random function of Xt or a random function of the edges

selected for the DCJ operation at a jump time t. As an example, for given p‚ q 2 [0‚ 1], the theorem is true

when at any jump time t, we define pt = p if the randomly selected edges for the DCJ are in the same

chromosome, and pt = q if they are in two distinct chromosomes. The weights of the different types of

genomic operations generated by DCJs can then be determined by p and q. The simulation results for

p = 0‚ 0:5‚ 1 and q = 0:5, are given in Figure 3.

4. RESTRICTED DCJ EVOLUTION AND PARSIMONIOUS PATHS

In the previous section, we studied the parsimony binding for the DCJ model when there is no constraint

for the number of circular genomes. In other words, an arbitrary number of d2-operations, say r, could be

consecutively performed on one or more chromosomes to produce r new circular chromosomes in the

genome. In this section, we study the parsimony problem for the DCJ operations restricted to the uni-

chromosomal linear genomes with the same genes, that is we assume that consecutive d1-operations

(reversals) are allowed without any restriction, but on the contrary, no two consecutive d2-operations are

allowed, which means that once an intermediate circular chromosome appears as a result of a d2-operation,

two adjacencies (black edges), one from each chromosome, are chosen and a DCJ on them generates a

unichromosomal linear genome.

Another way of looking into this is by considering a particular subgraph of Gn‚ 1, denoted by G�n, induced

by those vertices (genomes) in Gn‚ 1, which have at most one circular chromosome. The vertices of G�n can

be partitioned into U, the unichromosomal linear genomes, and ~U, the genomes with exactly one linear and

one circular chromosome. From the definition, it is clear that no two vertices in ~U are adjacent in G�n. The

edges between two vertices in U represent reversals, while the ones between a vertex from U and a vertex

from ~U represent the nonreversal DCJ operations needed to transform a unichromosomal linear genome

into a genome with one linear and one circular chromosome, and vice versa. The restricted DCJ distance d�

between two genomes G1‚ G2 2 G�n is then the shortest path between G1 and G2 in G�n. Yancopoulos et al.

(2005) showed that, in fact, for any pair of genomes G1‚ G2 2 G�n,

d�(G1‚ G2) = d(G1‚ G2):

Hence, once again, one can use the number of cycles and even paths in BP(G1‚ G2), to find d�(G1‚ G2).

For p = (pt)t2R + , where 0 � pt � 1, t 2 R + , we define a continuous-time-biased nearest-neighbor random

walk Y (p) = (Y
(p)
t )t�0 on G�n, where Y (p) jumps at Poisson times with rate 1. At each jump time t, if Y

(p)
t 2 ~U,
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then it chooses one of its neighbors, uniformly at random, and jumps to it, and if Y
(p)
t 2 U, then it jumps to

each of its d1-neighbors (obtained as a result of a reversal DCJ) with probability 2pt=fn(n + 1)g and jumps

to each of its d2-neighbors (obtained as a result of a nonreversal DCJ) with probability 2(1 - pt)=fn(n + 1)g.
The case pt = 1, for any t � 0, gives the reversal (inversion) random walk on the signed symmetric group of

size n. It is known that the reversal random walk diverges from its origin at its maximum speed up to time

n=2, for large n, where n is the number of genes in a unichromosomal linear genome (Berestycki and

Durrett, 2006; Jamshidpey and Sankoff, 2013).

We define the labeling ~L = (~Lt)t�0 and the random graph process ~Z = ( ~Zt)t�0, from Y (p), in the same

manner as we defined L and Z from X(p). As before, we drop the superscript p when there is no risk of

confusion. The following theorem estimates d(Y0‚ Ycn) using the number of tree components of ~Zcn.

Theorem 2. Let p = (pt)t�0, such that 0 � pt � 1, c > 0, and let (bn)n�1 be an arbitrary sequence of real

numbers such that bn !1, as n!1. Then, as n!1,

d(Y
(p)
0 ‚ Y (p)

cn ) - n + ~T cn

bn

ffiffiffi
n
p ! 0‚ in probability‚

where ~Tt denotes the number of tree components of ~Zt.

Proof. The proof is similar to the proof of Theorem 1. We define the number of fragmented and

nonfragmented cycles of BP(Y0‚ Ycn), as we defined the similar notions for BP(X0‚ Xcn), and denote by ~C(f )
t

and ~C(nf )
t , the number of fragmented and nonfragmented cycles of BP(Y0‚ Ycn) whose sizes are not greater

than 2
ffiffiffiffiffiffiffiffiffiffi
n + 1
p

. As before, there are at most 2 paths and at most
ffiffiffi
n
p

cycles of size greater than 2
ffiffiffiffiffiffiffiffiffiffi
n + 1
p

in

BP(Y0‚ Ycn). Therefore, we only need to handle the asymptotic behaviors of ~C(f )
t and ~C(nf )

t . Once again, the

former is bounded by 2f, where f is a Poisson random variable with mean 2c
ffiffiffiffiffiffiffiffiffiffi
n + 1
p

, and hence, as n! 0,

~C(f )
cn

bn

ffiffiffi
n
p ! 0‚ in probability:

Now, it suffices to show, as n!1,

~T cn - ~C(nf )
cn

bn

ffiffiffi
n
p ! 0‚ in probability:

To establish this, for any pair of labels f‘‚ ‘0g in (BP( ~Y0‚ ~Yt))0�t�cn, we define the indicator functions
~Icn(‘‚ ‘0) = ~Icn(‘0‚ ‘) and their total sum ~Icn, similarly to their counterparts introduced in the proof of

Theorem 1. To find an upper bound for E[~Icn], first observe that the probability that any pair of labels f‘‚ ‘0g
is picked for a DCJ at a jump time t is given by 2=fn(n + 1)g, if Yt 2 U. If Yt 2 ~U, given that the size of the

circular chromosome is 2j (which means there are exactly j black edges in the circular chromosome), this

probability is given by 1=fj(n + 1 - j)g. Letting qj be the probability that a nonreversal DCJ results in a

circular chromosome of size 2j, this means that the probability that any pair of labels f‘‚ ‘0g is picked for a

DCJ, at time t, for Yt 2 ~U is bounded by

Xn

j = 1

qj

j(n + 1 - j)
� 2

n

Xn

j = 1

1

j(n + 1 - j)

=
2

n(n + 1)

Xn

j = 1

1

j
+

1

n + 1 - j

� �

=
4hn

n(n + 1)
� 4 ln n

n(n + 1)
‚

(5)

where hn : =
Pn

j = 1 1=j is the harmonic number. Therefore, integrating this on [0‚ cn] and letting ~f be a

Poisson random variable with mean q�cn for

q�cn : = max
2cn

n(n + 1)
‚

4cnhn

n(n + 1)

� �
� 4c ln n

n
‚
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we can couple the random variables ~Icn(‘‚ ‘0) with indicator random variables Jcn(‘‚ ‘0) defined for any pair

of labels f‘‚ ‘0g by

P(Jcn(‘‚ ‘0) = 1) = 1 - P(Jcn(‘‚ ‘0) = 0) = P(~f � 2)‚

such that Jcn(‘‚ ‘0) = 1 if ~Icn(‘‚ ‘0) = 1 (the converse is not assumed), that is, ~Icn(‘‚ ‘0) � Jcn(‘‚ ‘0). We have

P(Jcn(‘‚ ‘0) = 1) = e - q�cn

X1
j = 2

(q�cn)j=j!

= O
ln n

n

� �2
 !

:

Defining Jcn =
P

‘‚ ‘0 Jcn(‘‚ ‘0), we can show Jcn=(bn

ffiffiffi
n
p

)! 0 in L1. To see this, write

E
Jcn

bn

ffiffiffi
n
p

����
���� � 1

bn

ffiffiffi
n
p
X
(‘‚ ‘0)

EjJcn(‘‚ ‘0)j

=
1

bn

ffiffiffi
n
p
X
(‘‚ ‘0)

P(Jcn(‘‚ ‘0) = 1)

=
n(n - 1)

bn

ffiffiffi
n
p O

ln n

n

� �2
 !

= O
( ln n)2

bn

ffiffiffi
n
p

� �
‚

implying Jcn=(bn

ffiffiffi
n
p

)! 0 in L1 and probability, as n!1. Therefore, we get
~Icn

bn

ffiffiffi
n
p ! 0‚ in L1 and probability‚

as n!1, since 0 � ~Icn � Jcn. The same lines of arguments as those in the proof of Theorem 1 finish the

proof. ,

FIG. 4. Simulation for the restricted DCJ model illustrating parsimony binding for restricted DCJ up to time cn, for

c � 0:5. The average DCJ distance estimates are based on 100 runs, for 1000 genes; p = 0:5.
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Remark 3. Note that ~Zcn is not an Erdös–Rényi random graph. Therefore, an exact analysis of the

number of tree components of ~Zcn is not easy and needs further investigation.

We have seen that the number of cycles in BP(Y0‚ Ycn) can be estimated by the number of tree com-

ponents of the random graph ~Zcn. This provides a method to see to what extent evolution by the restricted

DCJ process is bound by parsimony. Of course, this could also be checked by simulating Y and deriving the

DCJ distance between Ycn and Y0, using the existing linear-time algorithms for computing the DCJ distance

(cf. Yancopoulos et al., 2005; Bergeron et al., 2006). However, to make use of the method described for the

Erdös–Rényi random graph, we investigated the maximum time up to which evolution is bound to par-

simony by counting the number of tree components in ~Zcn. The simulation study summarized in Figure 4

shows that the binding holds up to time n=2, for large n. The DCJ distance is computed using UniMog.

5. DISCUSSION

Following ideas formulated in Jamshidpey and Sankoff (2013), we have adapted the analysis of

Berestycki and Durrett (2006), originally developed for mathematical transposition random walk on per-

mutations, to the biologically relevant DCJ operations. We have shown that as n gets large, the parsimo-

nious DCJ inference algorithms accurately reflect the number of evolutionary steps traced by evolutionary

processes as long as this remains less than n=2. Parsimony binding and the escape from parsimony are

illustrated by simulation experiments. Similar results have been discussed by Biller et al. (2015) and

Alexeev and Alekseyev (2017).

Our work required somewhat different techniques for restricted (Yancopoulos et al., 2005) and unre-

stricted (Berestycki and Durrett, 2006) DCJ frameworks. We also introduced differential weighting to the

different genomic operations generated by DCJs (e.g., reversals, translocations), weights that can fluctuate

over time. We established explicit relationships between the number of tree components of certain random

graphs (including Erdös–Rényi graphs in some cases) and the number of components of the breakpoint

graph, explicitly using the Berestycki–Durrett theory,
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