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From comparative gene content 
and gene order to ancestral 
contigs, chromosomes 
and karyotypes
Qiaoji Xu 1, Lingling Jin 2, Chunfang Zheng 1, Xiaomeng Zhang 1, James Leebens‑Mack 3 & 
David Sankoff 1*

To reconstruct the ancestral genome of a set of phylogenetically related descendant species, we 
use the raccroche pipeline for organizing a large number of generalized gene adjacencies into 
contigs and then into chromosomes. Separate reconstructions are carried out for each ancestral 
node of the phylogenetic tree for focal taxa. The ancestral reconstructions are monoploids; they each 
contain at most one member of each gene family constructed from descendants, ordered along the 
chromosomes. We design and implement a new computational technique for solving the problem of 
estimating the ancestral monoploid number of chromosomes x. This involves a “g‑mer” analysis to 
resolve a bias due long contigs, and gap statistics to estimate x. We find that the monoploid number of 
all the rosid and asterid orders is x = 9 . We show that this is not an artifact of our method by deriving 
x ≈ 20 for the metazoan ancestor.

Evolutionary inference on a set of species in a biological family, order or higher grouping, implies the reconstruc-
tion of ancestral phenotypes or genotypes. Phenotypic reconstruction, essentially genome-free, can be derived 
from comparative macroscopic or microscopic evidence from extant forms or fossils, while inference of genotypes 
is based on the genome sequences. In this work, we focus on analyses of annotated genes and the chromosomal 
ordering of these genes in the genomes of extant organisms.

The genome-free inference of the basic (or monoploid) ancestral chromosome number x, based on the values 
of x for a very large number of extant species, has a long history in plant evolutionary biology, exemplified in 
Grant’s ground-breaking 1963  work1, (pp. 483–487). More recently, sophisticated combinatorial optimization 
techniques and Bayesian inference approaches have been developed to infer ancestral chromosome  numbers2–4, 
but these approaches aim to elucidate neither the genetic composition nor the chromosomal structure of the 
ancestral species. In contrast, the present genome-based study, accessing all the common gene adjacencies (includ-
ing “gapped” adjacencies) among species within a phylogenetic context, seeks to recover the largest possible 
consistent subset of these adjacencies, organized into hypothetical ancestral chromosomes of a monoploid ances-
tor. One such set of chromosomes is constructed for each ancestral node of the phylogenetic tree describing the 
relationship among the analyzed species.

Inference about ancestral genome structure is difficult in the plant kingdom (as reviewed  in5). Adjacencies 
are disrupted in plant genomes by whole genome duplication followed by random deletion of duplicate genes 
(“fractionation”), in addition to niche-specific expansion and contraction of gene families, chromosomal rear-
rangements, fissions and fusions, by rampant invasions and culling of transposons, which typically comprise the 
majority of the genome, and other processes. Much of the work on reconstruction, e.g.,5,6, relies on a bottom-up, 
greedy stepwise inference of “contiguous ancestral regions”, incorporating external information, for example 
known whole genome duplication events, without particular attention to the number and nature of individual 
chromosomes.

In contrast, the focus on monoploidy in our method permits a single-step reconstruction of ancestral chromo-
somal fragments, contigs, without any recourse to information external to the given set of phylogenetically-related 
annotated genome sequences. The maximum weight matching (mwm) algorithm embedded in the raccroche 
 pipeline7,8 assures a robust monoploid reconstruction; each ancestor contains at most one representative of 
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each gene family. These gene family representatives are organized into a number x of ancestral chromosomes, 
the “basic number”, and ordered along the chromosomes in a way most consistent with the gene order in their 
extant descendants.

Somewhat unexpectedly, as illustrated in Fig. 1, the method produces more clear-cut inferences on clades of 
more remotely related species, such as six genomes each from a different monocot  order8, or six eudicot species 
from different  orders9, than sampling of lineages within orders (here Fagales) or families, where the results are 
degraded by high levels of  noise10.

In this paper, we trace the origin of this noise to a severe bias arising during the analysis of a clade of closely 
related genomes. We devise a method to eliminate this bias and thus mitigate the resulting noise. In addition 
we introduce methods to determine the statistically optimal number of chromosomes and reconstruct these 
chromosomes automatically.

We use our pipeline to determine the monoploid number of the common ancestor of all sampled species for 
each order as well as ancestors represented by internal nodes for each phylogeny. For each of six rosid orders—
Fagales, Cucurbitales, Malpighiales, Myrtales, Malvales and Sapindales, and five asterid orders—Asterales, Gen-
tianales, Lamiales, Solanales and Ericales, species were chosen based largely on the availability of annotated 
chromosome-level genome sequences representing many or most of the families in each order.

In the “Methodology” section, we present the motivations for each of the tools we introduce, with examples 
illustrating the problems addressed by these tools. This includes a “g-mer” technique for overcoming the contig 
length biaa, the sampling of 100 solutions of each mwm problem to take account of the non-uniquesness of mwm 
solutions, and the gap statistic approach to identify the best clustering trajectories and their inflection points.

The “Results” section summarizes our findings from applying our methods to a total of 71 plant genomes in 
eleven orders, producing 49 ancestral genomes in all. With 100 mwm samples for each ancestor, this required 
almost 5000 runs of the computationally costly mwm procedure. The full results are reported in the Supple-
mentary Materials. The “Results” section proper contains a comparison of the remarkably parallel gap statistic 
trajectories of the eleven orders, all with inflection points at x = 9 . Thus a major result of our genome-based 
method is that the monoploid number of the rosid and asterid orders is determined to be x = 9 , compared to 
the x = 7 or x = 8 estimated from a recent genome-free  study4.

Methods
Generating sets of long contigs. To infer gene content and gene order for each chromosome in each 
ancestral genome in a phylogeny, we identify a large number of  generalized11 (or “gapped”12) gene adjacencies, 
allowing for example, up to 7 spacer genes between the two considered adjacent, from all chromosomes in the set 
of input genomes and then infer adjacencies for each ancestral node in the species phylogeny. To do this, for each 
ancestor, graphs generated with all phylogenetically informative generalized adjacencies as vertices and edges 
joining any two adjacencies that each contain one of the 5’ and 3’ ends of the same gene, are analyzed using the 
mwm algorithm. This outputs inferred linear ancestral “contigs”, each containing up to several hundred genes. 
Figure 2 shows a typical distribution of contig content for one ancestor genome, using the methodology available 
preceding the innovations to be described in this section.

The data used for this work are annotated, chromosome-level or other high-quality genome sequences, acces-
sible on the coge13,14 platform, or uploaded to a dedicated repertoire on this platform from public sources, as 
well as phylogenies for each of the orders studied, as extracted from recent literature and  databases15,16. The only 
pre-processing software required was the synmap13,14 comparative genomics package, also on the coge platform, 
which produces syntenically validated homology identification between genomes (orthologs) and within single 
genomes (paralogs). The term “gene” here is used broadly to refer to gene families, or sets of homologous genes 
in the extant genomes as well as the hypothetical ancestral genes inferred by our procedures.

An important observation is that the lengths of the contigs constructed from the mwm output are highly 
variable, ranging from a single adjacency to several hundred in some cases. The lengths of the longest few contigs 
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Figure 1.  Clear-cut results of raccroche across  monocot8 (left) and  eudicot9 (center) orders, compared 
to noisy results for intra-ordinal analysis of Fagales on the right (See underlying phylogeny in the “Results” 
section). Heat maps compare an optimal clustering of ancestral chromosomal fragments with itself, with dark 
cells representing two fragments which co-occur on the same chromosome in several extant genomes.
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provide a measure of the conservation of gene order among the extant genomes, up to several hundred when 
reconstructing the ancestor of a plant family or order, compared to less than a hundred for analyses of more 
distantly related species in a more inclusive taxon such as the monocot or eudicot clades (on the left and center, 
respectively, of Fig. 1). On the other hand, the extreme variability of contig lengths encountered at the family 
or order level can lead to ambiguous or distorted clustering of contigs into inferred ancestral chromosomes.

Clustering the chromosomal co‑occurrence matrix and the long‑contig bias. To group contigs 
into clusters reflecting ancient chromosomes, we match each contig against the chromosomes of the extant 
genomes, and count the number of times any two contigs match the same chromosome, taking account of their 
ordering, possibly twice or more within a single genome. The resulting co-occurrence matrix, smoothed by a 
correlation analysis of pairs of  contigs8, is then submitted to a complete-link clustering analysis to distinguish 
the contigs, and hence the gene content, appropriate to each hypothetical ancestral chromosome. Once contig 
content of each chromosome is posited, the data on relative order of each pair of contigs on a chromosome is 

Figure 2.  Contigs per chromosome, Fagales Ancestor 2 (which we use as an example throughout; see Fig. 8). 
N.B. Contig length is in number of genes. Frequency (raw number of occurrences) scale differs among 
chromosomes.
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submitted to a Linear Ordering Problem routine to locate them along the chromosome. It is at this point that 
the variability of contig length leads to serious biases, due to the longest contigs tending to group together to 
produce unrealistically large clusters, as illustrated in Figs. 2 and 3 for a 7-chromosome analysis of a putative 
Fagales ancestor. The reason for this lies in the gene families with more than one (but ≤ 10 ) representatives in 
some extant genomes. Our focus on small gene families (larger families are excluded from the analysis) rather 
than inferred orthologs for our ancestral contig reconstructions avoids error in orthology assignment, such as 
those due to widespread whole genome duplication events in plant lineages, while at the same time increasing 
overlap in “gene” adjacencies among analyzed genomes. This inclusion, however, allows the mwm to join dis-
tantly homologous or non-homologous generalized adjacencies when assembling the ancestral contigs. This may 
result in splicing of two, three or more part-contigs from different chromosomes. Thus the various long contigs 
tend to involve many genes in common, deriving from several chromosomes in the extant genomes. For shorter 
contigs, this can also happen, but is rare.

The effect of this artifact is apparent not only in imbalances among the inferred chromosomes, as in Figs. 2 
and 3 , but also very noisy heat maps as on the right of Fig. 1.

Introducing g‑mers to remove bias and noise. As illustrated with the case of Fagales in Figs. 2 and 3 , 
the presence of extreme-length contigs produces biases in counting contig co-occurrences, leading to an unbal-
anced set of chromosomes. This would seem a severe problem with the raccroche method, especially when 
applied to sets of closely related genomes. It is possible, however, to completely remove the length bias by simply 
cutting each contig of length L into approximately L/g contigs of length g, called g-mers, exempting of course 
for contigs where L ≤ g already. We can then carry out the cluster analysis based on the g-mers derived from all 
the contigs.

A clustering may be visualized by constructing a “heat map” comparing the cluster to itself, as in Fig. 4, which 
shows the improvement in distinctness and size balance of an ancestral genome reconstruction through the use 
of g-mers. The figure suggests that at least in this example, any choice of g results in a clear improvement.

Sampling of maximum weight matching solutions. The mwm algorithm that we invoked to find an 
optimal matching of the adjacencies does not return a unique solution. Indeed, given the massive number of 
generalized adjacencies in our analyses, there may be many thousands of equally optimal solutions, usually quite 
similar - 95%± 3% - but exhibiting considerable amount of variation in gene content and gene order among the 
ancestral contigs.

The mwm algorithm constructs all these optimal sets of matchings without taking into account the properties 
of the contigs they determine or the clustering used to build chromosomes. In particular, whether they give rise 
to neat clusters in the complete-link analysis or not, does not influence the mwm constructions.

For this reason, we sample a number (100 or 50 in this study) of optimal mwm solutions. For each g, then, 
our problem becomes one of searching among these solutions for one that gives the clearest clustering pattern, 
towards which end we implement the following definition and analysis.

Gap statistics to determine the basic chromosome number x. To determine the number of chro-
mosomes in an ancestral genome, we cut the hierarchical clustering at a series of levels, starting near the root and 
proceeding towards the leaves, at each step increasing the number of clusters k by 1.

The gap statistic  method17 tests the significance of the k-cluster analysis for k = 2, 3, · · · against a null hypoth-
esis that there is no clustering, i.e., k = 1.

A plot of this gap statistic, as on the left in Fig. 5, for a k-chromosome analysis shows a rapid, though concave, 
rise for k = 2, 3, · · · , representing real improvements in the explanatory power of larger k, until a point where 
the rate of the increase drops visibly, becoming a slow linear trend measuring non-explanatory overfitting by 
excessive chromosome numbers. The point where one trend gives way to the other may be taken as an estimate 

Figure 3.  Statistics on the chromosomes in Fig. 2, showing bias in the assignment of long contigs.
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of the basic chromosome number x. Since this typically varies among the mwm samples, we plot all the values, 
plus their mean (indicated by back dots in the display), on a single graph as a first step in the search for the best 
value of x. There are various methods for detecting the inflection point of a curve transitioning from one trend to 
another. The intersection of linear fits to the gap statistic for first few values of k, and for the last few k10, proves to 
be unstable and misleading estimate, largely due to the variable concavity of the first trend. The method known 
as “kneedles”18, based on finding the point of maximum curvature in the plot, is biased towards low values of k, 
also because of the concavity of the initial trend. And there are many other methods, but the most appropriate 
approach for our data is to fit least squares line to the noisy trend, based on k = 12, . . . , 20 and to simply take x 
to be largest k for which the improvement in the gap statistic exceeds the prediction of this line.

As stressed above, since the mwm samples vary as to how clear a clustering they produce, we are not directly 
interested in the mean gap statistics, but seek instead the samples with the highest values of this statistic. Thus 
for each value of k, we note the 10 best values out of the hundred samples, and retain those samples that appear 
in the 10 best at least twice for 4 ≤ k ≤ 10 In the applications to be described below, this generally resulted in a 
choice of 9–15 samples. (For the metazoan example introduced later, we surveyed k for 4 ≤ k ≤ 20 to find the 
best mwm runs.) The mean gap statistics for these samples appear as blue dots in Fig. 5.

We consider the inflection point of the gap statistics in terms of the blue dots as the most pertinent to the 
estimate of x. And we consider the clustering with the highest score as the best choice to represent the ancestral 
monoploid. This clustering can be slightly adjusted, without changing k, using the Dynamic Cutting  routine19, 
which corrects for deeply nested subclustering as well as outlier contigs. Heat maps for the reconstructions in 
this paper are available in Supplementary Material A.
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Figure 4.  Heat map of Fagales Ancestor 2 based on full contigs (left) and on 20-mers (center) and 40-mers 
(right). The hierarchical cluster for each heat map depicted at the left-hand side. Shades of grey in cells, 
representing frequency of chromosomal contig co-occurrence in extant genomes, controlled to have equal 
darkness proportions across all heat maps.

Figure 5.  Left: Typical gap statistic for a single mwm sample. Right: Gap statistics for 100 samples with Fagales 
Ancestor 2. Black: means. Blue: means of 10 “best (as described in text).
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Choice of g for g‑mers. For each ancestor, we first break down the contigs into g-mers as described above, 
calculate a new co-occurrence matrix, construct a hierarchical cluster and carry out the gap statistic analysis for 
each of several values of g. This involves choosing the best mwm sample and cluster number k. To see the effect 
of choice of g on the properties of the reconstructed ancestor, we can use the following statistics. 

Coherence  The coherence of the construction is reflected in the resemblance between each chromosome, in 
either an extant or ancestral descendant genome, and some chromosome of its immediate ancestor. 
Then for each chromosome we calculate the maximum proportion of its genes originating in any 
chromosome of its immediate ancestor. We average this over all chromosomes of the descendant 
genome. And take an overall average over all descendants in the phylogeny, separately for extants 
and ancestors.

Coverage  This is simply the number of genes in the reconstructed genome.
Choppiness  When painting an extant genome by the colors of the chromosomes of the nearest ancestor, as 

illustrated in Fig. 12, we define the choppiness by counting the number of single colour regions 
( > 300 Kb) on all the extant chromosomes. This an indicator of how much genome rearrangement 
has intervened between the ancestor and its descendent.

Figure 6 suggests that for g > 10 , there is little change in the quality of the reconstruction for g up to 40, at 
least. While the levels of the evaluation statistics vary from order to order, as seen in the Supplementary Material 
B, there is no systematic dependence on g.

Alternative clustering. Our final partition of the contigs into discrete clusters does not retain any inter-
chromosomal relationships. However, the stepwise decomposition of the higher order links in the hierarchical 
clustering, as a “greedy” procedure, may lead to suboptimal results. This is mitigated by our use of dynamic tree 
cutting, which can redress inappropriate hierarchical constraints, and even more important, by the extensive 
sampling of mwm solutions, from which the most cleanly separated reconstructions are selected.

Approaches such as k-means are also possible, but this incurs stability issues with the co-occurrence matrix 
and does not possess the contig ordering properties of the hierarchical clustering.

Perhaps more important is that the matrix of contig co-occurrences, as well as the derived correlations 
between contigs, are situated in a very high dimensional space. With such data, much of the variance resides 
in relatively few dimensions. Principal Component Analysis (PCA) allows us to home in on these important 
dimensions, relegating the rest to noise. The clustering can then be done based on the coordinates of the contigs 
in these few dimensions only. Using the HCPC package for R, we produce the two-dimensional display for a 
Fagales Ancestor 1 in Fig. 7. Similar plots for the other ten orders are presented in Supplementary Material E.

Results
The Angiosperm Phylogeny Group circumscription of flowering plant orders and families, version  IV15, includes 
eight fabid and eight malvid orders (plus Vitales) as making up the rosids as well as seven campanulid and eight 
lamiid orders (plus Ericales) as constituting the asterids. We wished to include as many orders as possible in our 
study, ideally with access to at least six genomes with high quality, preferably chromosome-level, assemblies, 
distributed among at least three different families. At the time of data collection, we could obtain suitable data 
from three fabid orders,  Fagales20–27 (CoGe IDs: 28205, 35079, 51680, 60890-60894, 61298),  Cucurbitales28–33 
(CoGe IDs: 51412, 52000, 52078, 52080, 52081, 52083, 52084) and  Malpighiales34–39 (CoGe IDs: 16772, 60439, 
63100, 63108-63110); three malvid orders,  Myrtales40–44 (CoGe IDs: 35018, 63010, 63011, 63078, 63095), 

Figure 6.  Reconstruction quality as a function of g. Averaged over all extant Fagales genomes. Dip at g = 30 
only reflects a computation cost-imposed switch from 500 to 250 contigs in the clustering.
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 Malvales45–50 (CoGe IDs: 10997, 51247, 51249, 51764, 51857, 57762) and  Sapindales51–61 (CoGe IDs: 53702, 
60071, 60073-60076, 60708, 61333); one campanulid order,  Asterales62–68 (CoGe IDs: 28333, 63635, 63704, 
63706, 63708, 63722); and three lamiid orders,  Gentianales69–75 (CoGe IDs: 36623, 54651, 62692, 63659, 63600, 
63659),  Lamiales76–82 (CoGe IDs: 55705, 55706, 61332, 62516, 63702, 63658) and  Solanales83–88 (CoGe IDs: 52600, 
54650, 54663, 57792, 61620, 63661); plus  Ericales89–94 (CoGe IDs: 60226, 61151, 62508, 62516, 62597, 63696). 
The phylogenies we used for the rosid orders appear in Fig. 8, those for the asterids in Fig. 9. Other orders with 
sufficient genomes available were not selected, such as Fabales, because representative genomes from only one 
or two families were available, or Brassicales, which is the subject of a separate manuscript.

In the case of our data, there is some uncertainty about locating the inflection point within ±2 for any par-
ticular ancestor and any particular g-mer analysis. But the inflection point does not display any sensitivity to g in 
the range, say, from 15-50, although the overall gap score plot may be shifted upwards or downwards for different 
g, as in Fig. 10. Further there does not seem to be any tendency for the estimate of x to vary from ancestor to 
ancestor within an order; which is understandable as the basic chromosome number would tend to be the same 
across a single order. More complete data appears in Supplementary Materials C.

Though the gap statistics curves all display similar shapes, the improvement, namely increment in the signifi-
cance level from k − 1 to k is subject to considerable statistical fluctuation, which is the reason for the uncertainty 
in determining x, even for the best mwm samples. To attack this problem, under the hypotheses that the choice 
of g in the range from 10–15 to 40–50 is of little consequence, and that all the ancestors in an order have the 
same monoploid number, we take the average of the gap statistic across all these ancestors and all the g as most 
likely to reveal the trends in the order.

In addition, to amplify the visual impression of the tendencies in gap statistic, we can plot the improvement, 
i.e., the increment of this quantity from k − 1 to k, instead of the statistic itself. We display this increment in 
Fig. 11.

Once the ancestral reconstructions are completed, we can visualize the evolution of an extant genome from 
its most recent ancestor. We assign a colour to each chromosome in this ancestor, and then assign that colour 
to any region of an extant chromosome that matches with a contig in the ancestral chromosome. Examples are 
shown in Fig. 12. Further examples are in the Supplementary Materials D.

The reconstruction analysis within each of the 11 core eudicot orders was carried out independently of the 
other orders, including the identification of the gene families. To what extent do the ancestors of the various 
orders resemble each other? To answer this for a particular pair of orders, we first have to determine which 
gene families in one order correspond to a gene family in the other. This can be done by finding pairs of genes 
in extant genomes that are orthologous. Once these are identified we can determine the co-occurrence of gene 
families across the chromosomes of the ancestral genomes in the two orders. Figure 13 gives the results of this 
for the Fagales and Mapighiales orders. It can be seen that for the most part, we can identify corresponding 
chromosomes for the two orders.

Another aspect of the consistency of our reconstruction is a comparison with the PCA-based reconstruction. 
Figure 14 shows that although there are many genes that do not fit the general pattern, we can still identify, in 
most cases a 1-1 correspondence between the two sets of chromosomes. In the figure, 7 out of 9 chromosomes 
correspond in this way.

Figure 7.  Nine clusters in first two principal components for Fagales Ancestor 1 20-mer data.
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No upper limit on x
Our reconstruction of monoploid ancestors of rosid ancestors, not only at the highest nodes, but for somewhat 
more recent ancestors, all seem to have monoploid number k ≤ 9 . These results are eminently plausible, but 
still may provoke the question of whether raccroche would even be able to detect a higher k for an ancestor 
if this were warranted.

Lacking any knowledge of ground truth about ancient plant karyotypes, we could have recourse to simula-
tions, and simulation protocols have been used successfully in studying plant  evolution8. But simulations of plant 
evolution starting with an x = 20 , say, ancestor, and known parameters for chromosome fusion, whole genome 
duplication, and other processes, could only be very speculative, generating unrealistic versions of extant genomes 
to test the raccroche reconstruction.

Instead, we venture outside the plant world to an evolutionary domain where the monoploid ancestor is 
agreed to have x around 20, namely the animals, or  metazoans95. We used two out of the five genomes from 
those studied  in95, namely the lancelet Branchiostoma floridea (CoGe ID 63435), representing the deuterostomes, 

Figure 8.  Phylogenies of rosid orders with haploid numbers of chromosomes.
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and the sponge Ephydatia muelleri96 (CoGe ID 63175). The annotated genome files from the other three species 
 in95 being publicly unavailable, we substituted Octopus sinensis97 (CoGe ID 63434) from the phylum Mollusca 
as a representative of the protostomes, the cnidarian Acropora millepora98 (CoGe ID 63395) and the placozoan 
Trichoplax adhaerans99 (CoGe ID 63410). These five species represent major branches of the animal kingdom, 
including the subkingdoms Porifera (sponges) and Eumetazoa, the latter branching into the placozoan and 
cnidarian phyla and the bilaterians - protostomes and deuterostomes, as in Fig. 15. We note that the time scale 
is 6 to 10 times as long as that of the plant orders we have focused on. Not surprisingly, given the well-known 
lack of conserved gene order among early metazoan  lineages100, raccroche produces relatively short contigs 
with these data.

The results of our analysis is summarized in the significance increment graph Fig. 16. Here the monoploid 
number appears to be between 15 and 25, and certainly not in the range from 7 to 9.

Discussion
Grant’s visionary work on basic chromosome number of ancestral  plants1 predated genomics by several dec-
ades, but made use of data on many thousands of species to produce excellent estimates. Modern genome-free 
 approaches2–4 use sophisticated statistical methodology on greatly expanded data sets to improve and automate 
this line of research.

With the rise of molecular approaches to evolution and genomics, however, it behooves us to investigate 
whether the gene order on the chromosomes of a set of related extant genomes carry a signal about the basic 
chromosome number.

Despite their demonstrated ability to estimate gene content and to some extent gene order in reconstructed 
ancient genomes, the problem of delimiting chromosomes in an automated way has proved  difficult5. Our 
approach differs from previous methods in that it focuses solely on monoploid reconstructions, whether or 
not this corresponds to the ploidy of the hypothesized ancestors. This is done in a purely automated way, given 
the gene orders on the chromosomes or scaffolds of extant genomes, as well as their phylogenetic relation-
ships, without taking into account supplementary information or hypotheses in the process. The use of mwm, 
g-mer decomposition, chromosomal co-occurrence matrices and gap statistics to achieve the monoploid recon-
struction is entirely novel.

The result of applying our method to eleven rosid and asterid orders, without directly referencing chromo-
some numbers of the extant genomes, is that the basic chromosome number of these core eudicots is nine. This 
is somewhat higher than the value of eight recently obtained by genome-free  methods4 using chromosome num-
bers of many thousands of extant species, but not at all inconsistent with Grant’s original  assessment1, [p. 486].

Genome-free analysis and genome-based reconstruction both aim to infer the basic chromosome number x 
of entire orders, but their data and algorithmic approaches are completely different. Genome-free analyses are 
basically improvements on Grant’s ideas from six decades ago. The basic data are just the chromosome number 

Figure 9.  Phylogenies of asterid orders with haploid numbers of chromosomes.
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from each genome. Traditionally this was derived from cytology, long before any genomes were sequenced. The 
algorithms derive more ancestral chromosome numbers from those of more recent ancestors or extant species. 
There is no reference to genes. The genome-based approach on the other hand, does not make use of the chromo-
some number of the extant genomes nor does the inferred chromosome number of one ancestor depend on that 
of another ancestor. The data are all derived from the tens of thousands gene adjacencies in each extant genome. 

Figure 10.  Gap statistics for five Cucurbitales ancestors for 100 samples; means and means of 10 best (in blue). 
Results for 20-mers. From left to right, and from top to bottom, panels display results for Ancestors 1, 2, 3 , 4  
and 5, respectively.
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And the algorithms are combinatorial optimization in nature, handling all the adjacencies simultaneously. In 
short the genome-free and genome-based approaches have nothing in common except their final inferences.

Implicit in the notion of the basic chromosome number of an order is the idea that this pertains to a mon-
oploid ancestor. Our approach is unique in that it is the only one that is designed to infer monoploid ancestors, 
as achieved through the mwm algorithm.

Our reconstructions must be considered preliminary. First, we only recover around 10,000 gene families, 
less than half of what we expect from plant genomes, even those which have not undergone whole genome 
duplication. Second the assignment of these “genes” to chromosomes, and their ordering along the chromo-
somes varies somewhat from one mwm sample to another, even among those resulting in the clearest cluster-
ing. Nevertheless, every stage of our pipeline, which is not influenced by any information or data outside the 
input genomes, produces global or locally optimal results. Moreover, we have several indications of consistency, 
including chromosome-by-chromosome correspondences among the ancestors from different core eudicot 
orders, which are constructed independently from entirely different genomes. This is also clear from the paral-
lel plots of gap statistics increments and the switch between meaningful increase and noisy increase. We also 

Figure 11.  Transition between meaningful and noisy phases of increase in gap statistic for 11 core eudicot 
orders. The y-axis values are displaced + 0.01 for each order in the list above the previous item. Vertical 
lines at k = 9 and k = 10 highlight that for most orders, the increment at k = 10 is in line with the trend of 
uninformative additional clustering at higher values of k while for k = 9 the increment exceeds this trend.
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Figure 12.  Painting the chromosomes of the extant genomes using colors corresponding to the ancestral 
chromosomes. Example of ancestral Fagales colors on the oak and the bayberry genomes.
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Figure 13.  Gene families shared between Fagales and Malpighiales ancestors. For each Malpighiales ancestral 
chromosome, the yellow or green cell indicates the Fagales chromosome that shares a maximum number 
of gene families. For each Fagales ancestral chromosome, the blue or green cell indicates the Malpighiales 
chromosome that shares a maximum number of gene families. There are six green cells indicating closely related 
chromosomes in the two independently calculated ancestors. A total of 8419 gene families were reconstructed 
in the Malpighiales ancestor, of which 2278 were not recovered in Fagales. A total of 9424 gene families were 
reconstructed in the Fagales ancestor, of which 3283 were not recovered in Malpighiales.

Figure 14.  Gene families shared between hierarchical clustering-based chromosomes and PCA-based 
chromosomes. A green cell indicates that a chromosome from one method shares a maximum number of gene 
families with a single chromosome from the other. method.

Figure 15.  Metazoan phylogeny with haploid numbers of chromosomes. We can consider ancestral genome 
1 to represent either the eumatazoan ancestor, a sister group to the sponges (porifera), or the more recent 
parahoxoan ancestor, giving rise to the placazoans like trichoplax, the cnidarians like coral and the bilaterians. 
Ancestral genome 2 represents the common ancestor of the cnidarians, such as coral, and the bilateria. Ancestral 
genome 3 is the ancestor of the bilateria, including the protostomia and the deuterostomia.
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have correspondences between the results from different clustering methods. Furthermore we know that these 
results are not an artifact of some limitation in the detection power of our method; it successfully estimated an x 
value twice as large as the core eudicots for the ancestral metazoan genomes. This work opens up new directions 
for research into the evolution of the chromosomal structures of plants and other organisms.

Data availability
The assembled and annotated genomes analysed in the current study are publicly available in the CoGe plat-
form, https:// genom evolu tion. org/ coge/. Unique CoGe ID numbers for the genomes in each order (and for the 
metazoans) are given in the above text.
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