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Chapter 11
Fractionation, Rearrangement, Consolidation,
Reconstruction

David Sankoff and Chunfang Zheng

Abstract The reconstruction of ancestral gene orders based on models of chromo-
somal rearrangement mechanisms is complicated when some of the input genomes
have undergone whole genome duplications followed by fractionation, the massive
loss of some or most of the duplicate genes. We describe a reconstruction proto-
col that uses maximum weight matching in two phases Lo overcome the fragmented
nature of results based on gene adjacency only. We review consolidation methods
for recovering synteny patterns from fractionated genomes, and show how Lo inte-
grate these into the reconstruction protocol. The procedure is applicd to reconstruct
the common ancestral gene order of grape and poplar. Simulation of the evolution
of comparable genomes reveals the narrow ranges within which the rearrangement
and fractionation parameters must be set in order to emulate statistical attributes of
the extant genomes.

11.1 Introduction

All methods of reconstructing the details of ancestral genc order from a number
of extant genomes arc pased on common gene adjacencies in these genomes, €.&.
[1-4], though they all build on these fundamental data in different ways. As evo-
Jution progresses rearrangement events, notably inversion and reciprocal translo-
cation, successively disrupt gene adjacencics in individual genomes. In addition,
more local events such as gene {ransposition from one site to another, genc dele-
tion and gene duplication also disrupt some adjacencies and establish others. To
the extent that many common adjacencics remain unperturbed by these processes n
two or more of the extant genomes, they may contain enough evolutionary signal
to allow reconstruction of significant portions of the ancestral order. As evolution
continues, rearrangement can eventually degrade this signal so that only relatively
short ('ragmcms—-“comigs"—wof the ancestral order can be inferred. Reconstruction
methods need o transcend their dependence on gene adjacencics 1f longer range
gene orders are required.
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simulaled poplar genome. We cxpcrimcnlcd with parameters reflecting the numbers
of rearrungemenl opcrations, what pmporlion of these are chort inversions, how
many genes are deleted at a time, and how probable a deletion is to affectone or the
other of the original two copies of the poplar genome. we determined the uniguc set
of evolutionary parameter values producing the observed values in our analysis of

(he real plant genomes.

11.2 Reconstruction

Our reconstruction method requires prcproccs,sing annotated genomic data by asyn-
tenic block detection program such as SynMap in the CoGe platform o, 1o
identify likely orthalogous genes in all pairs of the genomes under study, as well as
paralogs in self-comparison of cach descendant of recent WGD. We then process the
combined set of all these orthologics and paralogics with the OMG! procedure 112]
to produce homology sets containing at most N paralogous versions of cach genc
in cach 2N -ploid, including at most one gene in cach diploid. We also impose some
more or less stringent condition such as at lcast two genes from different genomes
in cach set. These homology scts represent candidate genes for the reconstructed
ancestral genome. The use of stringent criteria in SynMap and OMG! cnsure that
each set can be mirrored by only onc gene in the eventual reconstruction. Though
this lends confidence 10 the reconstruction of the particular genc and its position in
the gene order, it does exclude the possibility of assigning additional genes, even in
a tentative way.

Once we have the set of relevant genes and all the homology relations we recon-
struct the ancestral order using Maximum Weight Matching (MWM) {13} at two
levels. First we identify all the genc adjacencies (considering only the genes within
the data set as constructed) in all the genomes and subgenomes, cach homology
set determining (WO vertices of a graph Gy, corresponding 0 the 5 and 3" cnds
of the genes involved. We weight each adjacency—an edge 1n G —according 1o
how many times homologs of the two genes involved are adjacent, with that partic-
ular 5°=3’ orientation, in the data, possibly taking into account phylogcnclic or data
quality considerations, depending on the particular biological problem being ana-
lyzed. The MWM then chooses an optimal subset of adjacencies. This gives a sct of
ancestral “contigs™. A small number of these may be circular; we lincarize cach of
these by discarding their Jlowest weight adjaccncy—-lhis has a minuscule effect on
the total weight of the matching.

For the second application of MWM, we use the contigs as vertices inagraph G2.
Each contig has a mean position (as measured in gene order position) on & chromo-
some in one or more of the input genomes oOf subgenomes. These positions order
the contigs on chromosomes. The few ambiguous contigs, 1.¢, containing large pro-
portions of genes originating in two or more chromosomes 10 the same genome OF
subgenome are discarded. In addition, to ensure & Jevel of syntenic robustness. it a
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Fig. 11.1 Fractionation leading 0 different adjacencies in WGD descendant and unaffected
genome. The adjacencics between genes | oand 3.3 and 5, Sand T as well as 4 and 6 in the
WGD descendant arc caused by fractionation. The adjacency between | and 8 in the unatiected
genome is caused by a reversal rearrangement, and the adjacency between genes 6 and 9 in the
WGD descendant 18 caused by deletion of 7 and a rcarrangement. Only two of the adjacencies are
caused by rearrangement, but ignoring {ractionation would jead to the inference of at least three
more rearrangements 1o account for the different sets of adjacencies in the two genomes

11.4 Whole Genome Duplication and Fractionation

djacency disruption follows from the random choice of
which of the two copies is deleted, i.c., which copy of a chromosome retains the re-
maining single copy of the gene. This was first made explicit by Wolfe and Shiclds
{17] in their original demonstration of “reciprocal gene loss” following the ancient
WGD of Saccharomyces cerevisiae: .. . this is the result of random deletion of in-
dividual duplicated genes from one or other chromosome subsequent to the initial
duplication of the whole region.” The pattern was further detailed later by the com-
parison of the S. cerevisiae gene order with that of related diploid yeasts (18, 191
where 1t was callcd“imerlcaving”, while Freeling 151 coined the term “fractionation”
in the context of plant gcnomics. Gordon ct al. (20] and more recently, Ouangraoud
et al. [21], have termed it “double syntcny“.

The phy]ogcnomic extent of fractionation and the formal treatment of the dele-
tion process have been the subject of numerous papers [22-26].

When a run ol adjacent duplicate pairs lose a subset of their redundant genes

from one chromosome and another, disjoint, subsct from the other copy, 45 in
tween the WGD descendant

Fig. 11.1, inference of the rearrangement distances be
and an unduplicated sister genome necessarily suggests that there are rearrangement
breakpoints where adjacency no longer exists between the two subsets of single-
copy Survivors. This cxaggerates the inferred number of reciprocal translocations
and artificially inflates the overall amount of chromosomal rearrangement inferred
between the two sister genomes.

We can correct this through the identification and isolation of “fractionation in-
regions in both the WGD descendant and its unduplicated sister genome
and may or may not

During fractionation, genc a

tervals”,
that have become partly or entirely single-copy in the former
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have been rearranged internally, but have (so far) been unaffected in both genomes
by rearrangements exchanging genes {rom within the interval and genes external to
the interval. The statistical propertics of the intervals bear on current topics of inler-
est in plant evolutionary genomics, whether duplicated genes are silenced or deleted
one by one or through the deletion of longer stretches of DNA [22-24] and whether
a fractionation regions tends to lose genes largely from one of the homeologous
chromosomal segments or equally from the two [27].

11.5 Consolidation

Ideas about combining the information from the two fractionated regions in recon-
structing ancestral genomes may be found in [5] for plants, in [20] for ycast and,
more formally, in [21] for ancient vertebrates.

We have been developing a series of consolidation algorithms 10 identify and

handle all instances of fractionation in a WGD descendant. The first of these (8]
focuses on detecting and accounting for pairs of regions of single-copy genes in
the WGD descendant that contain no genes in common (since the genes concerned
are single-copy) but whose combined (or consolidated [5]) gene content is exactly
the same as some contiguous region in a related genome unaffected by the WGD.
A recent improvement in collaboration with Katharina Jahn and Jakub Kovac has
lincar run time, allows duplicate genes to be shared by the two intervals in the WGD
descendant, and also extends the analysis to whole genome triplication and higher
polyploidies [9]. Current work by Jahn solves the more difficult problem of com-
paring two fractionated sister genomes while dispensing with any necessity of ref-
crencing an unduplicated genome.

In the WGD case, once the pairs of regions or intervals arc identified, together
with the corresponding interval in the unduplicated genome, all three regions arc
replaced by a new, labeled, virtual gene.

The two genomes, thus altered by the creation of virtual genes replacing frac-
tionated regions, are then examined for excess adjacencies and compared with the
corresponding quantity in the untreated genome.

When one of the two intervals in the WGD descendant is empty because of com-
pletely biased fractionation, the corresponding virtual gene is still replaced in the
appropriate context, deduced by examining the contexts of the other copy of the
virtual gene in the WGD descendent and in the unaffected sister genome.

The consolidation algorithm treats the fractionation intervals as identical units,
two in the WGD descendant and one in the unaffected genome. In this way it ac-
counts for rearrangements which includes a whole interval in its scope, but also
rearrangements which disrupt an interval, in that a fractionation involving such an
interval will generally be automatically counted as two intervals, resulting in two

virtual units instead of one. What the consolidation algorithm does not account for,

however, arc rearrangements occurring completely within one of the fractionation
intervals.

jonati sarrangeme idation, Reconstruction
{1 Fractionation. Rearrangement. Consolids

ancestor genome

WGD event

rf2 rearrangement, rf2 rearrangements

d genes deleted

WGD descendant genome unaffected by WGD
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jionation. This is remarkable since only about 20 % ol the poplar genome is made
up of single-copy regions.

Another advantage of consolidation is that it resolves a major part of the “short
contigs” problem of the MWM approach. The first stage ol the MWM in the re-
construction before consolidation produced 2598 contigs with 12,494 genes. But
once we applied the consolidation algorithm only 967 conligs were produced by the
MWM, lengthening the average contig size by a factor ol 2.6.

The benelits were less otriking but still non-negligible in the second stage MWM,
itself designed to overcome the problem of short contigs. Here, instead of 43 scal-
folds in the reconstruction before consolidation, seven additional “joins” appeared,
for a reduction 1o 36 scaffolds in the consolidated data.

11.7 Simulations

In our complex model ol genome divergence through rearrangement, WGD and
[ractionation can only be validated by sceing how many aspects of the simulated
output genomes match those of the real genome, with a minimum of model parame-
ters. The number of genes in the two genomces, and the number of single-copy genes
are fixed quantitics, determined by the real genomes. Rearrangement can be carriced
out by a mixture of (1 —8)p short inversions, where the number of genes in the
scope of the inversion is geometrically distributed with mean [, plus 8p unbounded
rearrangements whose endpoints are chosen randomly on chromosomes. In cach
deletion event the number ol contiguous genes lost is gcomclrically distributed with
mean A. Finally, we introduce a parameter lor Iractionation bias, the probabil-
ity that a deletion takes place in a speciticd “subgenome”, one ol the two original
copies ol the duplicated ancestral genome created by the WGD event. There arce
thus five parameters that must be set for cach simulation, p, 5 1t X, 7 plus the
given structure of the ancestral genome, determined in our case, by the number of
homologs in the poplar and grape genomes, and the number of single-copy genes in
poplar. To lind the appropriate values of the parameters L0 simulate the data, we can
observe the total number of adjacencies between the output genomes, both before
consolidation (R1) and alter consolidation (R7). We can measure the average s17¢
L of the [ractionation intervals (or, cquivalcmly, the number of intervals N, since
the product of the two quanlilies is fixed). And we can also indirectly observe the
fractionation bias P, which is the deviation from an even split of the deleted genes
ol [rom the two copes of the [ractionation interval in poplar or its simulation. More
specilically we can measure P(1), P(2),--- in pairs of poplar fractionation intervals
totaling 1.2, ... genes, respectively. We term this “indirect” since we do not have
access in the real poplar genome 10 the identity of genes in terms ol their origin in
“subgenomes”’ produced by the WGD event. We simply measurc

one ol the other
here are in the larger [ractionation interval compared to 1ts

how many more genes t
counterpart, a value (hat is larger, on the average than the “true” bias.

We carried out 2 cyclical search, onc parameter at d time, to lind scttings (Ta-
ble 11.2) that gave the same average Ry, Ry and N over 50 simulations as the values
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Table 11.2 Best parameter
vilues Parameters p 0

I A ,r

Best values 1570 0.05 247 1.32 0.70

Fable 11.3  Simulation -
statistics ¢ are 0

compared to real Real genomes
genomes, In cach case the
standard deviation over 50
_sn_mplcs ws less than 1 6 Consolidation Consolidation
of the mean of the variable

50 simulations

Before  After Before  Alier

Total adjacencies {(R) 19.538 15,363 19.563 15.298
Fractionation intervals (N) 2.462 ’I:HR
Fig. 11.4 Size ol 10000

poplar/grape fractionation
regions compared to
simulations with parameters
set so that reconstruction 1000
statistics match

poplar/grape

O simulation

100

number of intervals

10

7.8 9-10 11-12 13-14 15-16 17-18 19-20 21-22 23-24
size of interval

Ca . ot ¥ ¥ 2w

uvl:rl‘:l,dtb.t-l lror.n :grdpuland poplar (Tublc‘l 1.3). We adjusted 7 so that the plot of the
EX%L S'In?uldlbd P(i) resembled that from the real genomes.

e O;xrrtlgil(:\it}:‘:.uuc(;n;,ol1dfucd regions d.clculcd by our algorithm, there are a num-

) non_indcpcr.]dch‘ ﬂo:glu .lhan those in lh_c simulations (Fig. 11.4), suggesting

oy o qoncs [0;(, ’ ‘;.‘L‘U()‘n events ‘ullcclmg neighboring genes, and clear ten-

o recn thetny cr .L,;l&.‘d in one ol‘lhc two homeologs, as would be predicted
he reent ayh(i) t:u g;t.rlomc dommam;c [27].

o pO;lar v;,c’n Onl;’;m:a;ouu (p = 0.85) l.or the fractionation bias fits the data

o bt a ower Valu‘ng sTglc-co?y intervals, which are relatively rare (sec

e e evidonc ‘L }(]p =0.70) fIFS the ‘morc numerous short intervals bet-

e cmirc‘yicndcpcnd:nlu;lk::lc:f}l]c‘cuon of the various deletion sites does not

lhuErTm particularly prone to bc’:comi(;g t:r:;i-i:;;m some egions ol the genome

scr\,c“(’;‘:;u‘t-;h(:‘}:&rf };])a’r)a.m%‘lcr.s (five) to set in the simulations than quantities to ob-

g is a vector, we can only observe its trend with any accuracy
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Fig. 11.5 Discrepancy in 45

pairs of poplar intervals in the .

number of genes, compared

with simulations with a5

factionation bias

= 0.55,0.70.0.85. 3

Deletion event size
gcomctricu\ly distributed with
mean 1.3, Jagged nature of
graphs due not o statistical
fluctuation but to 15
measurement of discrepancy

25

2

fractionation bias

from an “even” sphit, which is 1
necessarily calculated stightly 05

ditferently for cven and odd
(otals of genes in the 0
fractionation intervals

genes in interval

not the individual P(i)), so there 1s inherently some non-uniqueness associated with
the best choice of paramclers, as suggested in Fig. 11.6. Nevertheless, the parames
ters can only take on values ina very restricted region. For example, outside a narrow
range p produces 100 few or too many adjacencics, no matter what the seltings are
for the other parameters. And given p, the number of intervals N is sensitive o both

parameters ft and A.

11.8 Conclusions

The most important result from this work is that consolidation has the cifect of
greatly increasing the length of ancestral contigs output from the first MWM stage.
The scalfolding approach already compensates for the short contigs problem, but
combining the two strategies yiclds cven longer scaffolds.

We have shown that we can closely simulate the gene order evolution of a WGD
descendant and an unaffected sister genome, lending some confidence to our recon-
struction of their common ancestor. We do detect, however, a significant number of
long single-copy intervals, with highly biased fractionation, in the poplar genome,
lying well outside the scope of our simulations. Whether there are biological con-
nections among the genes in these intervals, and whether there are gencs with no
detected homologies in grape that are also present a5 single copies in these inter-
vals, are questions for further study.

Further work will also involve improvements in parameter estimation as well as
the identification of other measurable properties of evolutionary scenarios, restoring
the balance between the number of parameters and the number quantities observed,
in order to dispel problems of non-uniqueness.

This work has becn undertaken as part of a project to {formally analyze aspects of

WGD fractionation, especially in the context of angiosperm evolution. Other diree-
tions include allowing duplicates in pairs of fractionation intervals, treating ploidics

e ————
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Chapter 12
Error Detection and Correction of Gene Trees

Manuel Lafond, Krister M. Swenson, and Nadia El-Mabrouk

Abstract Reconstructing the phylogeny of a gene family and reconciling the ob

tained gene tree with the species tree reveals the history of duplications, losses, and
other events that have shaped the gene family, with important implications towards
the functional specificity of genes. However, evolutionary histories inferred by rec-
onciliation are strongly dependent upon the accuracy of the trees, and few misplaced
jeaves will lead Lo a completely different history. Furthermore, sequence data alone
often lack the information to confidently support a gene tree topology. We outline
a number of criteria that can be used o detect erroneous genc trees. Analysing En-
sembl gene trees of the fish genomes Stickleback, Medaka, Tetraodon, and Zebrafish
reveals a significant number of erroncous gene rees. Finally, some potential direc-
tions for error correction of gene trees are explored.

12.1 Introduction

Duplication followed by modification is 2 major mechanism driving evolution. Con-
sequently, genes cannot be scen as independent entities, but rather as entitics re-
fated through duplication and speciation events. Grouping genes into familics of
homologs (i.c. copies originating from a single ancestral gene) and reconstructing
the phylogeny of cach gene family is requisite for a variety of annotation, cevolu-
tionary, and functional studics. By reconciling such a gene tree with a species tree,
one can infer the history of duplications, losses and other events that have shaped
the gene family. Such a history reveals the orthology (evolution of the ancestral
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