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g predominant process, that of the substitution of one nucleotide for another. At the genomic
level, other processes take on importance. These mechanisms can involve two or more remote
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of the reciprocal translocation of segments between two chromosomes (e.g., Ref. 1), and of
the inversion of segments (e.g., Refs. 2,3).
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of gene positions in different organisms and the series of genomic changes responsible for
them can be quite complex.

15.3 Properties of Random Permutations

The mechanisms of genome “shuffling” during the evolution of species inspired the constryc.
tion of a stochastic model.4 Consider a random permutation of n genes numbered from 1 to 3
n. An “intersection” is defined as any pair of genes in the permutation where the number
on the first is greater than the number on the second. Y, represents the total number of
intersections in the random permutation. It can be shown that the mean and variance of
this quantity are E(Y,)=n(n-1)/4 and Var(Y,) =n(2n? + 3n — 5)/72 =~ n3/36. :

In extending these results to circular genomes, we éncounter certain problems, such as how
to define an intersection, since the choice of starting point for numbering the genes in both of
the genomes is arbitrary. Nevertheless, with the help of relatively natural conventions about
how to number the genes in circular alignments and how to decide whether a correspondence
between two genes should be considered in the clockwise or counterclockwise direction, it ig
possible to show that E(Y,) ~ n?/6.

Making use of the distribution of Y,, we can carry out a statistical test to verify whether
we have arrived, in the shuffling process, at an equilibrium. We can model a simple process
of transposition by choosing a term in the sequence at random, and moving it to another
position, also chosen at random. This process fits naturally into the framework of the “card-
shuffling” theory of Aldous and Diaconis in Refs. 5.6.

In Ref. 4, it is shown how to simulate standardized curves of E[}‘;(t)], where ¢ represents
the time measured in terms of the number of elementary transpositions carried out (Fig. 1).
The results show that the waiting time to arrive at the equilibrium situation (or “almost”:
Ya(t) > (1 -¢)Y,) is of the order of nlogn.

15.4 The Evolution of Gene Order in Certain Bacteria

The results of Ref. 4 provide a theoretical framework for the comparison of gene order
in five bacteria — Escherichia coli (EC), Salmonella typhimurium (ST), Bacillus subtilis
(BS), Caulobacter crescentus (CC) and Pseudomonas aeruginosa (PA).™® This comparison
necessitated as a first step the construction of a normalized data base of gene names and
their descriptors? adapting that of Ref. 10. since each species in the study has had its own
terminological traditions.

An index of evolutionary divergence was defined by normalizing the number of intersec-
tions in the alignment of each pair of species, i.e.. dividing this number by the expected
number for random circular permutations having the same n. Constructed on the basis of
this index, a phylogenetic tree (Fig. 2) groups the five species in a way which is also bi-
ologically the most plausible. This result shows that gene order contains a great deal of
Information about the phylogenetic relationships among genomes.

15.5 Testing the Hypothesis of Reciprocal Translocations

Nadeau and Taylor! analyzed the divergence between mouse and man in terms of the number
of translocations inferred to have occurred during the separate evolution of two species.
Their analysis is based on the identification of “conserved” chromosomal segments, segments
containing the same genes in the two species. Under the hypothesis that these segments
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Figure 1: Upper left: average number of intersections as a function of number of transpositions n = 100.

Upper right: Number of transpositions until 50% of permutations are almost random. Lower left: Number
of transpositions to equilibrium, as a function of n.
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Under a model of random reciprocal translocations between chromosomes, we tested the
hypothesis that these events could account for the configuration observed in the matrix. One
prediction of the model is that there should be a large proportion of pairs (A,B) of human

(C,D). These can be identified in the matrix of Fig. 3 as four filled cells at the corners

of a rectangle (as in the inset). For example. human chromosomes 2 and 7 and mouse

chromosomes 7 and 12 contain evidence of a reciprocal translocation.
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Figure 2: Grouping of five bacteria according to a normalized measure of the number of intersections.

15.6 The Phylogeny of the Mitochondrial Genome

After identifying the genes in the DNA sequences of the mitochondrial genome in 16 fungi,
animals, etc., a data base containing the gene order of these mitochondrial chromosomes was
constructed.?

A genomic distance d(z, y) was defined based on the minimum number e(z,y) of elemen-
tary rearrangements necessary to transform the gene order of genome r to that of another,

y:

d(z,y) = N(z) + N(y) — 2N(zy) + e(z, y).

The rearrangements consist of inversions or transpositions of segments of the chromo-
some. N measures the number of genes in z, y or common to both. The formulation of a
“branch-and-bound” algorithm for calculating the genomic distance d enabled the develop-
ment of the “DERANGE” software.!3 The distances estimated by this program applied to
the mitochondrial data were input to a phylogenetic analysis whose results (Fig. 4) corre-
spond in large-measure to the evolutionary relationships generally accepted among these 16
organisms.

15.7 Inversion Distance

The problem of inferring the number of rearrangements necessary to transform one permuta-
tion into another has no rapid solution. The DERANGE program can only provide an upper
bound for the answer for n larger than 10 or 12, since computing time becomes excessive
unless only the most promising regions of the space of possible solutions are searched.!* Re-
search into more powerful algorithms has concentrated on the simpler problem of computing
the shortest series of inversions only that transform one permutation to another.’®-16 In
Ref. 16, an exact branch-and-bound algorithm is developed that finds an optimal solution
rapidly as long as n does not exceed 30. This algorithm makes use of maximum weight
matchings, shortest paths, and linear programming. For large n, we can use the rapidly cal-
culated upper and lower bounds as estimates, since for n = 50, say, they differ only by 3 on
the average. Moreover, if we restrict our analysis to permutations likely to be generated by
a reasonable number of inversions, these bounds are even tighter. In a series of experiments
on permutations generated by k random inversions, we find that the average upper bound
estimate of k only differs from k by at most 1, for k < n/2 and n up to 100.
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Figure 3: Tabulation of human and mouse autosomes with genes in common (filled cells). Inset: Pattern
resulting from reciprocal translocation.
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Figure 4: Eukaryote phylogeny based on the order of genes in the mitochondrial genome.
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15.8 Conclusions

The recent preoccupation of biologists with the study of entire genomes leads inevitably to
questions concerning the nature and the consequences of evolution at the genomic level. We
hope to have demonstrated the scope and the interest of the new problems thus raised in
algorithmics, in probabilistic modeling, and in simulation.
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